首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
  国内免费   2篇
地球物理   3篇
地质学   16篇
  2021年   1篇
  2020年   2篇
  2017年   1篇
  2016年   2篇
  2013年   3篇
  2010年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1996年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
11.
12.
Abstract

In the Northern Apennines, the External Liguride (EL) units are interpreted as derived from the domain that joined the Ligure–Piemontese oceanic basin to the Adriatic plate continental margin. The EL units can be divided into two different groups according to the lithostratigraphic features of the basal complexes underlying the Upper Cretaceous–Lower Tertiary carbonate flysch (e.g. Helminthoid flysch). The first group includes the western successions characterized by Santonian–Campanian sedimentary melanges where slide blocks of lherzolitic mantle, gabbros, basalts, granulites, continental granitoids are represented. The second group is represented by the eastern successions where the Cenomanian–Campanian basal complexes mainly consist of sandstones and conglomerates where the mafic and ultramafic rocks are scarce or completely lacking. Their original substrate is represented by the Middle Triassic to Lower Cretaceous, mainly platform carbonate deposits, found as slices at the base of the eastern successions.

The stratigraphic features shown by the basal complexes allow the reconstruction of their source area that is assumed to be also representative for the pre-Upper Cretaceous setting. The proposed reconstruction suggests the occurrence in the EL domain of two distinct domains. The eastern domain was characterized by a thinned and faulted continental crust belonging to the Adriatic continental margin. The western domain was instead floored by subcontinental mantle associated with lower and upper continental crust, representing the ocean–continent transition. This setting is interpreted as the result of the opening of the Ligure–Piemontese oceanic basin by passive rifting, mainly developed by simple shear, asymmetric extension of the continental crust. © 2001 Éditions scientifiques et médicales Elsevier SAS  相似文献   
13.
14.
In this paper, a scenario for the early evolution of the Jurassic oceanic Liguria-Piemonte basin is sketched. For this purpose, four selected examples of ophiolite sequences from the Northern Apennines and Corsica are described and analyzed. In the External Ligurian units (Northern Apennines), the ocean–continent transition of the Adria plate was characterized by a basement made up of subcontinental mantle and lower continental crust, covered by extensional allochthons of upper crust. Both, the basement rocks and the extensional allochthons are cut by basaltic dikes and covered by basalts and pelagic deposits. The conjugate ocean–continent transition of the Corsica margin, represented by the Balagne nappe (Corsica), was composed of mantle peridotites and gabbros covered by basaltic flows and minor breccias, that in addition include continent-derived clasts. By contrast, the innermost (i.e., closest to the ocean) preserved area observed in the Internal Ligurian (Northern Apennines) and Inzecca (Corsica) units consists of former morphological highs of mantle peridotites and gabbros, bordered by small basins where the basement is covered by a volcano-sedimentary complex, characterized by ophiolitic breccias and cherts interlayered with basaltic flows. The overall picture resulting from our reconstructions suggests an asymmetric architecture for the Liguria-Piemonte basin with a central area bounded by two different transition zones toward the continental margins. This architecture can be interpreted as the result of a rifting process whose development includes a final stage characterized by passive, asymmetric extension of the lithosphere along an east-dipping detachment fault system.  相似文献   
15.
The Fenes Nappe belongs to the stack of tectonic units cropping out in the southern Apuseni Mts (Romania). It is characterised by a structural history consisting of two folding phases that developed during the time spanning from Early Aptian to Late Maastrichtian. The D1 phase produced west-northwest-verging, isoclinal to very tight folds, associated to a slaty cleavage. The main metamorphic imprint of the Fenes Nappe is linked to this deformation phase; illite and chlorite ‘crystallinity’ values indicate metamorphic conditions of the late diagenesis, close to the diagenetic zone/anchizone boundary. The subsequent D2 phase produced north-northwest-verging, parallel folds, not associated with synkinematic recrystallisation. These phases are interpreted as developed during a structural path, which includes burial at a depth of 8–10 km, followed by exhumation at shallower structural levels. To cite this article: A. Ellero et al., C. R. Geoscience 334 (2002) 347–354.  相似文献   
16.
In Santonian-Early Campanian sedimentary melanges of the External Liguride units (northern Apennine), slide blocks of subcontinental mantle and MOR basalts are associated with lithologies derived from the continental crust. One of these sedimentary melanges, the Mt. Ragola complex, is characterized by the close association of mantle ultramafic, mafic and quartzo-feldspathic granulites. Mafic granulites show a wide compositional range. They generally display a marked metamorphic layering, but undeformed rocks which preserve a gabbroic fabric are found locally. The most frequent lithologies are Al-spinel gabbronorites, generally containing minor olivine, and Fe-Ti oxidebearing gabbronorites. Troctolites, olivine gabbronorites and anorthosites were also recovered. Relics of primary textures as well as mineral and bulk-rock compositional variations indicate a comagmatic intrusive origin for the protoliths of the mafic granulites. This intrusive mafic complex underwent a subsolidus reequilibration under granulite facies conditions, at 0.6–0.9 GPa and 810–920°C, and was derived from crystallization at intermediate levels of tholeiite-derived liquids, possibly affected by crustal contamination. Its primary features are similar to those of the upper zone of the Ivrea layered complex. The gabbroic protolith for the granulites of External Liguride units were probably crystallized into the extending Adria lithosphere in relation to the initial stages of the opening of the western Tethys.  相似文献   
17.
The Popolasca–Francardo area of northern Corsica contains an assemblage of continental tectonic units affected by an Alpine deformation. In one of these units, Unit II, previously regarded as weakly metamorphosed, a metamorphic mineral assemblage characterized by sodic amphibole, phengite, quartz, albite and epidote has been found in an aplite dyke that cuts the dominant granitoids. Peak‐metamorphic temperature and pressure conditions of 300–370°C and 0.50–0.80 GPa, respectively, have been determined. This finding indicates that a continuous belt of continental slices, characterized by high‐pressure, low‐temperature metamorphism of Tertiary age, extends from the Tenda Massif in the north to the Corte area in the south, thus placing additional constraints on the tectonic evolution of Alpine Corsica. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
18.
All the geological constraints for an exhaustive reconstruction of the Triassic to Tertiary tectonic history of the southern Dinaric-Hellenic belt can be found in Albania and Greece. This article aims to schematically reconstruct this long tectonic evolution primarily based on a detailed analysis of the tectonic setting, the stratigraphy, the geochemistry, and the age of the ophiolites. In contrast to what was previously reported in the literature, we propose a new subdivision on a regional scale of the ophiolite complexes cropping out in Albania and Greece. This new subdivision includes six types of ophiolite occurrences, each corresponding to different tectonic units derived from a single obducted sheet. These units are represented by: (1) sub-ophiolite mélange, (2) Triassic ocean-floor ophiolites, (3) metamorphic soles, (4) Jurassic fore-arc ophiolites, (5) Jurassic intra-oceanic-arc ophiolites, and (6) Jurassic back-arc basin ophiolites. The overall features of these ophiolites are coherent with the existence of a single, though composite, oceanic basin located east of the Adria/Pelagonian continental margin. This oceanic basin was originated during the Middle Triassic and was subsequently (Early Jurassic) affected by an east-dipping intra-oceanic subduction. This subduction was responsible for the birth of intra-oceanic-arc and back-arc oceanic basins separated by a continental volcanic arc during the Early to Middle Jurassic. From the uppermost Middle Jurassic to the Early Cretaceous, an obduction developed, during which the ophiolites were thrust westwards firstly onto the neighboring oceanic lithosphere and then onto the Adria margin.  相似文献   
19.
In the Boyal? area, northern Turkey, the tectonic units of the ?stanbul–Zonguldak Terrane and the IntraPontide suture zone are thrust over the deposits at the top of the Sakarya Terrane, known as Tarakl? Flysch. It consists of Early Maastrichtian–Middle Paleocene turbidite and mass-gravity deposits, whose source mainly corresponds to the ?stanbul–Zonguldak Terrane, and, with a lesser extent, to the IntraPontide suture zone. These deposits were sedimented in a foredeep basin developed during the convergence between Sakarya and Eurasian continental microplates. In the Late Paleocene–Early Eocene time span, the Tarakl? Flysch was deformed (D1 phase) during the closure of the foredeep basin. In the Miocene time, the strike-slip tectonics (D2 phase) related to the North-Anatolian fault produced further deformations of the Tarakl? Flysch.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号