首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21708篇
  免费   4947篇
  国内免费   6991篇
测绘学   3070篇
大气科学   3318篇
地球物理   4483篇
地质学   13553篇
海洋学   3296篇
天文学   488篇
综合类   2196篇
自然地理   3242篇
  2024年   141篇
  2023年   466篇
  2022年   1305篇
  2021年   1471篇
  2020年   1169篇
  2019年   1391篇
  2018年   1475篇
  2017年   1262篇
  2016年   1338篇
  2015年   1525篇
  2014年   1559篇
  2013年   1752篇
  2012年   1893篇
  2011年   1991篇
  2010年   1947篇
  2009年   1794篇
  2008年   1686篇
  2007年   1539篇
  2006年   1359篇
  2005年   1149篇
  2004年   858篇
  2003年   684篇
  2002年   679篇
  2001年   639篇
  2000年   525篇
  1999年   406篇
  1998年   245篇
  1997年   232篇
  1996年   208篇
  1995年   146篇
  1994年   181篇
  1993年   122篇
  1992年   100篇
  1991年   71篇
  1990年   58篇
  1989年   42篇
  1988年   46篇
  1987年   39篇
  1986年   19篇
  1985年   26篇
  1984年   8篇
  1983年   10篇
  1982年   14篇
  1981年   9篇
  1980年   7篇
  1979年   15篇
  1976年   4篇
  1958年   10篇
  1957年   10篇
  1954年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
大河坝石墨矿是川北米仓山南缘石墨矿带新发现的大型显晶质石墨矿床。研究了该矿床的地质特征和矿石主量、微量及稀土元素地球化学特征,结果表明:含矿岩层为副变质岩,矿区石墨矿体原岩沉积于缺氧的还原环境,原岩为一套含碳质黏土质细—粉砂岩及含碳质泥灰岩组合。微量元素特征指示矿体原岩由近海陆源碎屑物沉积形成,沉积水体主要为盐度较低的、混合不均匀的淡水—半咸水。矿石ΣREE平均值为150×10-6,与泥灰岩相近;δCe值平均为0.91,呈弱负异常,δEu值平均为0.67,呈负异常,具滨海潮坪相沉积特征。含矿岩石δ13C值为-21.4‰~-19.0‰,平均为-19.86‰,表明成矿碳质来源主要为有机碳,并混合了部分无机碳。矿床成因类型为沉积变质型,其变质作用可能包括多次区域变质作用并叠加了混合岩化作用。  相似文献   
992.
结合9个野外剖面和17口井,对塔里木盆地玉尔吐斯组沉积演化及其对烃源岩的制约作用进行了系统研究和分析。在精细对比后发现,塔里木盆地下寒武统玉尔吐斯组可分为2个三级层序(SQ1、SQ2)、5个四级层序(sq1—sq5),其中三级层序SQ1可分为3个四级层序,SQ2可分为2个四级层序。SQ1发生在寒武纪初期,海进速度较慢,影响范围相对局限,而SQ2的海进则相对迅速,影响范围较大。四级层序sq1发生在第一次海侵初期,水体浅,主要沉积紫红色白云岩、灰黑色砂屑白云岩,起填平补齐的作用;sq2、sq4发生在海侵—海退的转换时期,是两套深水的沉积,岩性以黑色泥岩、硅质泥岩和硅质岩为主,局部发育泥岩与条带状白云岩互层;sq3、sq5是海退过程中的浅水沉积,主要发育灰色白云岩和藻白云岩,局部有泥质夹层。利用Mn、Fe、Ti、Rb、K、Sr、Ba、Cu、U、V、Mo等元素及其比值进行沉积环境分析表明,sq2时期,水体深度大、盐度低、气候温暖湿润,有利于生物发育,并且其硫化缺氧的环境极其有利于有机质的保存;sq4时期,水体深度较大,盐度相对较小,气候相对温暖湿润,较为适合生物生存,并且其硫化缺氧夹次氧化的环境,较为适合有机质保存。高频海平面变化与沉积环境演化影响着玉尔吐斯组的烃源岩分布与品质,sq2时沉积的烃源岩品质优于sq4,但是其分布范围小于sq4。  相似文献   
993.
Oil and gas shows are rich in drilling wells in Kaiping sag,however,large oilfield was still not found in this area.For a long time,it is thought that source rocks were developed in the middle-deep lacustrine facies in the Eocene Wenchang Formation,while there is no source rocks that in middle-deep lacustrine facies have been found in well.Thickness of Wenchang Formation is big and reservoirs with good properties could be found in this formation.Distribution and scale of source rock are significant for further direction of petroleum exploration.Distribution characterization of middle-deep lacustrine facies is the base for source rock research.Based on the sedimentary background,fault activity rate,seismic response features,and seismic attributes were analyzed.No limited classification method and multi-attributes neural network deep learning method were used for predicting of source rock distribution in Wenchang Formation.It is found that during the deposition of lower Wenchang Formation,activity rate of main fault controlling the sub sag sedimentation was bigger than 100 m/Ma,which formed development background for middle-deep lacustrine facies.Compared with the seismic response of middle-deep lacustrine source rocks developed in Zhu I depression,those in Kaiping sag are characterized in low frequency and good continuity.Through RGB frequency decomposition,areas with low frequency are main distribution parts for middle-deep lacustrine facies.Dominant frequency,instantaneous frequency,and coherency attributes of seismic could be used in no limited classification method for further identification of middle-deep lacustrine facies.Based on the limitation of geology knowledge,multi-attributes of seismic were analyzed through neural network deep learning method.Distribution of middle-deep lacustrine facies in the fourth member of Wenchang Formation is oriented from west to east and is the largest.Square of the middle-deep lacustrine facies in that member is 154 km2and the volume is 50 km3.Achievements could be bases for hydrocarbon accumulation study and for exploration target optimization in Kaiping sag.  相似文献   
994.
A W-Mo mineralized region is located along the northern margin of the South Qinling tectonic belt of China. WMo mineralization occurs mainly in Cambrian–Ordovician clastic and carbonate rocks, and the ore bodies are structurally controlled by NW–SE-and NNE–SSW-striking faults. Evidence for magmatism in the area is widespread and is dominated by intermediate–felsic intrusives or apophyses, such as the Dongjiangkou, Yanzhiba, Lanbandeng, and Sihaiping granitic bodies. Quartz-vein-type mineralization and fault-controlled skarn-type mineralization dominate the ore systems, with additional enrichment in residual deposits. At present, there are few or insufficient studies on(1) the age of mineralization,(2) the relationship between intermediate–felsic granite and W-Mo mineralization,(3) the source of ore-forming materials,and(4) the metallogenic and tectonic setting of the mineralized area. In this paper, we present geochronology results for numerous intrusive granitic bodies in the South Qinling tectonic belt. U-Pb zircon geochronology of the Lanbandeng monzogranite and Wangjiaping biotite monzogranite yields ages of 222.7 ± 2.3 and 201.9 ± 1.8 Ma, respectively. In contrast to the Late Triassic age of the Lanbandeng monzogranite, the age of the newly discovered Wangjiaping biotite monzogranite places it at the Triassic–Jurassic boundary. Re-Os molybdenite geochronology on the Qipangou W-Mo deposit yielded a model age of 199.7 ± 3.9 Ma, indicating the deposit formed in the early Yanshanian period of the Early Jurassic. Granitoid intrusions in the mineralized area are characterized by composite granite bodies that crystallized at ca.240–190 Ma. While there were multiple stages of intrusion, most occurred at 210–220 Ma, with waning magmatic activity at 200–190 Ma. The Re-Os age of molybdenite in the region is ca. 200–190 Ma, which may represent a newly discovered period of W-Mo metallogenesis that occurred during the final stages of magmatism. The heat associated with this magmatism drove ore formation and might have provided additional ore-forming components for metallogenesis(represented by the Wangjiaping biotite monzogranite). Ore materials in the mineralized area were derived from mixed crustal and mantle sources. Enrichment of the region occurred during intracontinental orogenesis in the late Indosinian–Yanshanian, subsequent to the main Indosinian collision. At this time, the tectonic environment was dominated by extension and strike-slip motion.  相似文献   
995.
The Dongjun Pb-Zn-Ag deposit in the northern part of the Great Xing’an Range (NE China) consists of quartz-sulfide vein-type and breccia-type mineralization, related to granite porphyry. Hydrothermal alteration is well-developed and includes potassic-silicic-sericitic alteration, phyllic alteration and propylitic alteration. Three stages of mineralization are recognized on the basis of field evidence and petrographic observation, demarcated by assemblages of quartz-pyrite-arsenopyrite (early stage), quartz-polymetallic sulfide (intermediate stage) and quartz-carbonate-pyrite (late stage). Zircon LA-ICP-MS U-Pb dating indicates that the granite porphyry was emplaced at 146.7 ± 1.2 Ma (Late Jurassic). Microthermometry and laser Raman spectroscopy shows that ore minerals were deposited in conditions of intermediate temperatures (175–359°C), low salinity (0.5–9.3 wt% NaCl eqv.) and low density (0.60–0.91 g/cm3). Ore-forming fluids were derived largely from magmatic hydrothermal processes, with late-stage addition of meteoric water, belonging to a H2O-NaCl-CO2 ± CH4 system. The δ34SV-CDT values range from 0.75‰ to 4.70‰. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ore minerals are in the ranges of 18.240–18.371, 15.542–15.570, and 38.100–38.178, respectively. Data for the S and Pb isotopic systems indicate that the ore-forming metals and sulfur were derived from Mesozoic magma. Based on the geological characteristics and geochemical signatures documented in this study, we conclude that the Dongjun deposit is a mesothermal magmatic hydrothermal vein-type Pb-Zn-Ag deposit controlled by fractures and related to granite porphyry, in response to Late Jurassic tectonic–magmatic–hydrothermal activity. We further conclude that fluid immiscibility, fluid mixing and fluid-rock interactions were the dominant mechanisms for deposition of the ore-forming materials.  相似文献   
996.
The hydrogeochemical characteristics of geothermal fluids can reveal the genesis of geothermal systems and act as important references for developing and using geothermal resources.This study presents hydrogeochemical processes and thermal cycle mechanisms of typical geothermal fields in Western Sichuan.Based on the geological conditions in Western Sichuan,29 hot springs in three geothermal fields in the Batang and Litang areas were selected for hydrochemical and isotopic (δD andδ~(18)O) analyses.Furthermore,the temperature of the thermal reservoir was calculated and the upflow cooling process of the hot springs was analyzed.Most of the subterranean hot waters in Batang and Litang are of the HCO_3-Na hydrochemical type.The ion variation in Batang is primarily affected by water-rock interactions.There is a strong positive correlation between Na~+,B~-,and Cl~-in Litang,suggesting that they have the same material source.The Na~+and metaboric acid content is relatively high,which indicates that the groundwater runoff in both areas is relatively long-lasting,with reduced flow velocity;moreover,the metasilicic acid content is relatively high,which supports this conclusion.Both hydrogen and oxygen isotopes plot near the atmospheric precipitation line,indicating that groundwater recharge is functionally obtained from precipitation.The calculated thermal storage temperatures in Batang and Litang were 88–199°C and 96–154°C,respectively.The proportion of cold water mixing in Batang was 64%–67%,while that in Litang was 60%–68%.According to the calculated results,the initial thermal cycle depth of the Batang area (4540–4780 m) was greater than that of the Litang area (3150–3960 m).The enthalpy of the deep parental geothermal fluid in Batang was 1550 J/g with a Cl~-concentration of 37 mg/L,while that in Litang was 2100 J/g with a Cl~-concentration of 48 mg/L.  相似文献   
997.
商丹断裂带是一条多期次活动的大型断裂带,区域上也是大型金属矿的赋存带,对金属矿产具有重要的控制作用。文章以商丹断裂带(河南段)为研究对象,在基于孔沟至寨根一带构造剖面的宏观特征和显微构造特征解析的基础上,对研究区控矿构造和机理提出了新的认识。综合研究表明,商丹断裂带(河南段)具多期活动特征,整体呈现"正花状构造"样式。分析方解石机械双晶、矿物动态重结晶及变质矿物组合等显微构造显示,断裂带以韧性变形为主,两侧地层以韧性和脆性变形叠加为特征。区内变质变形温度以绿片岩相、中低温为主,局部可达角闪岩相。早期的韧性剪切活动控制本区金矿的总体控矿界面,晚期的构造活动形成的韧-脆性破碎带对先期形成的矿床进行改造、富集、最终定位,主断裂两侧的次级韧-脆性构造带是未来寻找金矿的有利部位。  相似文献   
998.
阳江东凹是近年来珠江口盆地(东部)的热点探区,过去四十余年受限于钻井数量与地震资料品质和覆盖范围,缺少对古近系的研究。随着勘探程度的提高,走向深层古近系是珠江口盆地油气勘探的必然趋势。本文在覆盖全区的高品质三维地震资料基础上,结合新近钻井和测井资料,系统解剖阳江东凹的构造特征及其对沉积充填的控制,并探讨古近系的勘探潜力。阳江东凹发育5个次级洼陷,古近纪控洼断裂频繁转换,断裂活动、岩浆底侵导致的隆升差异性控制了各次洼三级层序的展布、厚度和沉积充填。东部恩平20洼、恩平21西洼和恩平21东洼控洼断裂活动强度整体较强,文昌组以半深湖相和辫状河三角洲沉积为主,烃源条件和储盖组合良好,特别是恩平21东洼的缓坡带,是阳江东凹古近系勘探的有利区带。  相似文献   
999.
辽东地区胶-辽-吉造山带发育大量的变基性岩墙/床,这些岩墙/床对研究造山带古元古代构造演化过程具有重要意义.本文通过对辽东地区辽河群中的变基性岩床进行岩石学、岩石地球化学和锆石LA-ICP-MS U-Pb年代学研究,探讨其成因和形成的构造背景,有助于深入认识胶-辽-吉造山带古元古代地质演化过程.辽东地区变基性岩床顺层侵入于辽河群大石桥组大理岩中,发生角闪岩相变质作用,岩石类型以斜长角闪岩和石榴斜长角闪岩为主,主要矿物为角闪石和斜长石,其他矿物有石榴子石、石英、黑云母、磁铁矿和黄铁矿等.变基性岩床样品的锆石具特征的环带结构和较低的Th/U值(0.01~0.34),指示锆石为变质成因,4个样品的锆石LA-ICP-MS U-Pb定年结果(1854±11 Ma、1846±12 Ma、1847±9 Ma和1848±7 Ma)表明基性岩床发生变质作用的时间为~1.85 Ga,与华北克拉通最终碰撞拼合的时间一致.根据基性岩床与胶-辽-吉造山带其他地区~2.1 Ga的基性岩具有相似的野外产状、岩石学和地球化学特征,推断其侵位时代可能为~2.1 Ga.基性岩床样品的SiO2含量为47.07%~52.18%,K2O+Na2O含量为1.78%~4.70%,MgO含量为3.92%~8.59%,属于拉斑玄武岩系列.大部分样品的稀土总量较低(47.3×10-6~109.5×10-6),富集轻稀土元素和大离子亲石元素(如Rb、Ba、La),亏损高场强元素(如Nb、Ta),Zr、Hf没有明显的亏损且未发生分馏作用.所有样品的Al2O3、CaO和Fe2O3T含量在主量元素相关性图解上分布规律且与MgO含量呈较好的相关性,Nb/La值(0.52~0.73)随SiO2和MgO含量的变化较小,表明岩浆在侵位过程中受地壳混染的程度较低,似"岛弧"型地球化学特征是富集岩石圈地幔源区遭受古俯冲组分改造的结果.结合已有的辽河群变质火山-沉积岩、辽吉花岗岩和基性岩的研究成果,胶-辽-吉造山带在~2.1 Ga处于陆内裂谷环境.  相似文献   
1000.
现代地球科学研究的重大突破在很大程度上取决于观测和分析技术的创新。新世纪以来,我国地球科学领域引进了一批高性能新型微束分析仪器设备,建立了一批高规格的实验室。本文回顾了近十年来微束分析技术与方法的主要进展及其在地球科学研究中的应用实例,包括电子探针、扫描电镜、透射电镜、大型离子探针、纳米离子探针、飞行时间二次离子质谱、激光剥蚀等离子体质谱、激光诱导原子探针、原子探针技术、显微红外光谱、同步辐射等,这些分析技术的进步和广泛应用极大地提高了我们对地球和行星演化历史及许多地质过程的理解。今后,应加快微束分析的新技术、新方法和新标准的开发,特别是高水平人才队伍建设,提高创新能力并在国际学术舞台上发挥重要作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号