首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   10篇
  国内免费   1篇
大气科学   1篇
地球物理   36篇
地质学   60篇
海洋学   7篇
天文学   4篇
综合类   1篇
自然地理   10篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   1篇
  2011年   7篇
  2010年   3篇
  2009年   8篇
  2008年   6篇
  2007年   9篇
  2006年   5篇
  2005年   12篇
  2004年   6篇
  2003年   3篇
  2002年   7篇
  2001年   5篇
  2000年   2篇
  1998年   2篇
  1987年   1篇
  1984年   1篇
  1980年   1篇
  1978年   1篇
  1973年   2篇
排序方式: 共有119条查询结果,搜索用时 296 毫秒
61.
In the austral summer seasons 2001/02 and 2002/03, Global Positioning System (GPS) data were collected in the vicinity of Vostok Station to determine ice flow velocities over Lake Vostok. Ten GPS sites are located within a radius of 30 km around Vostok Station on floating ice as well as on grounded ice to the east and to the west of the lake. Additionally, a local deformation network around the ice core drilling site 5G-1 was installed.
The derived ice flow velocity for Vostok Station is  2.00 m a−1± 0.01 m a−1  . Along the flowline of Vostok Station an extension rate of about 10−5 a−1 (equivalent to 1 cm km−1 a−1) was determined. This significant velocity gradient results in a new estimate of 28 700 years for the transit time of an ice particle along the Vostok flowline from the bedrock ridge in the southwest of the lake to the eastern shoreline. With these lower velocities compared to earlier studies and, hence, larger transit times the basal accretion rate is estimated to be 4 mm a−1 along a portion of the Vostok flowline. An assessment of the local accretion rate at Vostok Station using the observed geodetic quantities yields an accretion rate in the same order of magnitude. Furthermore, the comparison of our geodetic observations with results inferred from ice-penetrating radar data indicates that the ice flow may not have changed significantly for several thousand years.  相似文献   
62.
Middle Miocene (11.18–10.65 Ma) low sulfidation‐type epithermal gold mineralization occurred in the Cibaliung area, southwestern part of Java Island, Indonesia. It is hosted by andesitic to basaltic andesitic lavas of the Middle Miocene Honje Formation (11.4 Ma) and is covered by Pliocene Cibaliung tuff (4.9 Ma). The exploration estimates mineral resource of approximately 1.3 million tonnes at 10.42 g/t gold and 60.7 g/t silver at a 3 g/t Au cut‐off. This equates to approximately 435,000 ounces of gold and 2.54 million ounces of silver. That resource resulted from two ore shoots: Cibitung and Cikoneng. Studies on ore mineralogy, hydrothermal alteration, geology, fluid inclusion, stable isotopes and age dating were conducted in order to characterize the deposit and to understand a possible mechanism of preservation of the deposit. The ore mineral assemblage of the deposit consists of electrum, naumannite, Ag‐Se‐Te sulfide minerals, chalcopyrite, pyrite, sphalerite and galena. Those ore minerals occur in quartz veins showing colloform–crustiform texture. They are enveloped by mixed layer clay illite/smectite zone, which grades into smectite zone outward. The temperature of mineralization revealed by fluid inclusion study on quartz in the veins ranges from 170 and 220°C at shallow and deep level, respectively. The temperature range is in agreement with the temperature deduced from the hydrothermal alteration mineral assemblage including mixed layered illite/smectite and laumontite. The mineralizing fluid is dilute, with a salinity <1 wt% NaCl equivalent and has stable isotopes of oxygen and hydrogen composition indicating a meteoric water origin. Although the deposit is old enough that it would have been eroded in a tropical island arc setting, the coverage by younger volcanic deposits such as the Citeluk tuff and the Cibaliung tuff most probably prevented this erosion.  相似文献   
63.
The Kingking deposit is a gold‐rich porphyry copper deposit and the southernmost deposit at the eastern Mindanao mineralized belt, Philippines. It is underlain by Cretaceous–Paleogene sedimentary and volcanic rocks that are intruded by mineralized Miocene diorite porphyries and by barren Miocene–Pliocene dacite and diorite porphyries. The main alteration zones in the deposit are the inner potassic zone and the outer propylitic zone. The biotite‐bearing diorite and hornblende diorite porphyries are the primary host rocks of mineralization. Two dominant copper minerals, bornite and chalcopyrite, which usually occur as fracture fillings, are associated with fine crystalline quartz veinlet stockworks in the mineralized diorites. Minor secondary covellite, chalcocite and digenite are also observed. The primary Cu‐Fe sulfide phases initially deposited from ore fluids consisted of bornite solid solution (bnss) and intermediate solid solution (iss), which decomposed to form the bornite and chalcopyrite. Peculiar bornite pods that are different from dissemination and are associated with volcanic rock xenoliths in biotite‐bearing diorite porphyry are noted in a drill hole. These pods of bornite are not associated with quartz veinlet stockworks. Fluid inclusion analyses show three types of inclusions contained in Kingking samples: two‐phase fluid‐rich and vapor‐rich inclusions and polyphase hypersaline inclusions from porphyry‐type quartz veinlet stockworks. The liquid–vapor homogenization temperatures (TH) and the dissolution temperature of halite daughter crystals (TM) from the polyphase hypersaline inclusions predominantly range from 400°C up to >500°C. The wide range of TH and TM may be due to heterogeneous trapping of variable ratios of vapor and brine. For some inclusions, TH > TM and in some cases, TH < TM, indicating that some of the brine was supersaturated or saturated with NaCl at the time of entrapment. Calculated salinity of the polyphase hypersaline inclusions ranges from 40 to 60% NaCl equivalent. Temperature and vapor pressure of mineralized fluid were estimated to be 400°C and 16 MPa.  相似文献   
64.
The Selogiri area, situated in Wonogiri regency, Central Java, is one of several gold prospecting areas in the Southern areas Mountain Range in Java, Indonesia. Three types of dioritic–andesitic intrusive rocks occur in the Selogiri area, namely, hornblende andesite porphyry, hornblende diorite porphyry and hornblende diorite, exposed in a half‐circular depression where volcanic breccia and tuff are widely distributed. The occurrence of stockwork quartz veinlets and associated with magnetite and malachite coating along the cracks in the diorite porphyry suggests porphyry type mineralization. This is also supported by the occurrence of polyphase hypersaline fluid inclusions in the stockwork veinlet quartz. Small‐scale miners are mining NS‐trending quartz veins for gold associated with base metal sulfides. These veins are probably epithermal‐type mineralization that overprinted porphyry‐type mineralization. The Neogene intermediate to silicic hydrous magmatism in Java could have formed the porphyry‐type mineralization in Selogiri, as in the rest of the Sunda–Banda arc.  相似文献   
65.
The ability of biodegradation for crude oil was examined for ten strains of marine bacteria. With regard to their degradation ability forn-alkanes the microorganisms tested could be divided into four groups, although the same result was not observed for microbial degradation of aromatic hydrocarbons obtained by the UV measurements.  相似文献   
66.
A numerical model, coupling an analysis of beach groundwater flow with an analysis of swash wave motion over a uniform slope, is presented. Model calculations are performed to investigate the variations of swash-induced filtration flows across the beach face for different input parameters. Swash zone sediment transport under the influence of such filtration flow across the beach face is investigated through modification of effective weight of sediment particle and modification of swash boundary layer thickness. These effects are quantified based on a bed load transport model with a modified Shields parameter.  相似文献   
67.
In 1969, prior to the discovery of the subglacial Lake Vostok, an Askania Gs-11 gravimeter was operated at Vostok Station (78.466°S, 106.832°E; 3478 m asl) to observe tidal gravity variations. To gain a better understanding of the lake's tidal dynamics, we reanalyzed these data using a Bayesian Tidal Analysis Program Grouping method (BAYTAP-G and -L programs). The obtained phase leads for the semidiurnal waves M2 (6.6 ± 2.1°) and S2 (10.1 ± 4.2°) are more pronounced than those of the diurnal waves, among which the largest phase lead (for K1) was 5.0 ± 0.5°. The obtained δ factor for M2 was 0.890 ± 0.032, significantly less than the theoretical value of 1.16. For three global ocean tide models (NAO99b, FES2004, and TPXO6.2), the estimated load tides on waves Q1, O1, P1, K1, M2, and S2 range from 0.1–0.2 μGal (Q1 and S2) to 0.6–0.7 μGal (K1). The difference in amplitude among the three models is less than 0.14 μGal (M2), and the difference in phase is generally less than 10°. In calculating the residual tide vectors using the ocean models, the TPXO6.2 model generally gave the smallest residual amplitudes. Our result for the K1 wave was anomalously large (1.36 ± 0.25 μGal), while that for the M2 wave was sufficiently small (0.37 ± 0.17 μGal). The associated uncertainty is half that reported in previous studies. It is interesting that the residual K1 tide is approximately 90° phase-leaded, while the M2 tide is approximately 180° phase-leaded (delayed). Importantly, a similar reanalysis of data collected at Asuka Station (71.5°S, 24.1°E) gave residual tides within 0.2–0.3 μGal for all major diurnal and semidiurnal waves, including the K1 wave. Therefore, the anomalous K1 residual tide observed at Vostok Station must be linked to the existence of the subglacial lake and the nature of solid–ice–water dynamics in the region.  相似文献   
68.
The Okinoshima Formation crops out on Okinoshima Island and comprises a thick sequence (> 200 m) of pyroclastic rocks and alternating beds of sandstone and mudstone. Because Okinoshima Island is located between Honshu and Tsushima Island, the Okinoshima Formation potentially provides an important record of volcanism during the opening of the Japan Sea in northwest Kyushu, as well as a record of the formation of the present Genkai Sea region. In consideration of the lack of previous geochronological work, dating (fission‐track and U–Pb) of igneous zircons extracted from the Okinoshima Formation were undertaken and studied the clay mineral alteration in the pyroclastic material in order to reveal its thermal history. These data are used to constrain the age of the Okinoshima Formation and the present Genkai Sea region. Our results show that no thermal event has reset the fission‐track age after deposition of the pyroclastic rocks, and that the Okinoshima Formation was deposited at 16.2 Ma. The present Genkai Sea region is a deep‐sea basin, and its formation at 16.2 Ma was accompanied by submarine volcanism and rapid subsidence that marked the climactic stage of Japan Sea formation. After 16 Ma, the tectonic setting of the present Genkai Sea region changed from one of extension (related to the formation of the Japan Sea) to one of compression, with uplift occurring under the influence of the clockwise rotation of southwest Japan. Consequently, after 16 Ma the present Genkai Sea region became isolated from the forming processes of the Japan Sea.  相似文献   
69.
The response time (lag time) between rainfall input and run‐off output in headwater catchments is a key parameter for flood prediction. Lag times are expected to be controlled by run‐off processes, both on hillslopes and in channels. To demonstrate these effects on peak lag times within a 4.5‐km2 catchment, we measured stream water levels at up to 16 channel locations at 1‐min intervals and compared the lag times with topographic indices describing the length and gradient of the hillslope and channel flow path. We captured storm events with a total precipitation of 38–198 mm and maximum hourly precipitation intensity of 9–90 mm/hr. There were positive relationships between lag time and flow path length as well as the ratio of the flow path length and the square root of the gradient of channels for the most intense storms, demonstrating that channel flow paths generally defined the variation in lag times. Topographic analysis showed that hillslope flow path lengths were similar among locations, whereas channel flow path length increased almost one order of magnitude with a 100‐fold increase in catchment area. Thus, the relative importance of hillslope flow path decreased with increasing catchment area. Our results indicate that the variation in lag times is small when hillslopes are sufficiently wet; thus, catchment‐scale variation in lag times can be explained almost entirely by channel processes. Detailed topographic channel information can improve prediction of flood peak timing, whereas hillslopes can be treated as homogeneous during large flood events.  相似文献   
70.
Classification of Tsunami and Evacuation Areas   总被引:3,自引:2,他引:1  
On March 11, 2011, a large earthquake that occurred offshore the north-east coast of Japan generated a large tsunami which devastated extensive areas of the Tohoku coastline. Despite Japan being considered a country well prepared for these types of disasters, large casualties were recorded, with numerous discussions amongst the Japanese coastal engineering community ensuing. As a result, two different levels of tsunamis have been proposed and now recognized in Japan, depending on the frequency of such extreme events. The idea that hard measures can protect the lives of inhabitants of coastal areas has been abandoned, and these measures are only considered to be effective in protecting properties against the more frequent but lower magnitude events. Soft measures should always be used to protect against the loss of lives, and to this respect, the authors of the paper propose the introduction of a Classification of Evacuation Areas, to show which of these should be prioritized by residents as they seek to evacuate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号