首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2677篇
  免费   82篇
  国内免费   17篇
测绘学   45篇
大气科学   203篇
地球物理   567篇
地质学   913篇
海洋学   207篇
天文学   564篇
综合类   7篇
自然地理   270篇
  2021年   27篇
  2020年   35篇
  2019年   27篇
  2018年   46篇
  2017年   34篇
  2016年   63篇
  2015年   51篇
  2014年   58篇
  2013年   157篇
  2012年   74篇
  2011年   114篇
  2010年   116篇
  2009年   147篇
  2008年   125篇
  2007年   111篇
  2006年   120篇
  2005年   101篇
  2004年   112篇
  2003年   108篇
  2002年   101篇
  2001年   77篇
  2000年   67篇
  1999年   69篇
  1998年   72篇
  1997年   45篇
  1996年   34篇
  1995年   34篇
  1994年   32篇
  1993年   40篇
  1992年   31篇
  1991年   22篇
  1990年   29篇
  1989年   42篇
  1988年   16篇
  1987年   25篇
  1986年   22篇
  1985年   36篇
  1984年   30篇
  1983年   24篇
  1982年   25篇
  1981年   40篇
  1980年   29篇
  1979年   25篇
  1978年   10篇
  1977年   22篇
  1976年   14篇
  1975年   15篇
  1974年   19篇
  1973年   15篇
  1972年   11篇
排序方式: 共有2776条查询结果,搜索用时 312 毫秒
61.
Numerical models of mantle convection are presented that readily yield midocean ridge basalt (MORB) and oceanic island basalt (OIB) ages equaling or exceeding the apparent ∼1.8-Ga lead isotopic ages of trace-element heterogeneities in the mantle. These models feature high-viscosity surface plates and subducting lithosphere, and higher viscosities in the lower mantle. The formation and subduction of oceanic crust are simulated by means of tracers that represent a basaltic component. The models are run at the full mantle Rayleigh number and take account of faster mantle overturning and deeper melting in the past. More than 97% of the mantle is processed in these models. Including the expected excess density of former oceanic crust readily accounts for the depletion of MORB source relative to OIB sources. A novel finding is of gravitational settling of dense tracers within the low-viscosity upper mantle, as well as at the base of the mantle. The models suggest as well that the seismological observation of a change in tomographic character in the deep mantle might be explained without the need to postulate a separate layer in the deep mantle. These results expand the range of models with the potential to reconcile geochemical and geophysical observations of the mantle.  相似文献   
62.
A detailed study of the morphology and micro‐morphology of Quaternary alluvial calcrete profiles from the Sorbas Basin shows that calcretes may be morphologically simple or complex. The ‘simple’ profiles reflect pedogenesis occurring after alluvial terrace formation and consist of a single pedogenic horizon near the land surface. The ‘complex’ profiles reflect the occurrence of multiple calcrete events during terrace sediment aggradation and further periods of pedogenesis after terrace formation. These ‘complex’ calcrete profiles are consequently described as composite profiles. The exact morphology of the composite profiles depends upon: (1) the number of calcrete‐forming events occurring during terrace sediment aggradation; (2) the amount of sediment accretion that occurs between each period of calcrete formation; and (3) the degree of pedogenesis after terrace formation. Simple calcrete profiles are most useful in establishing landform chronologies because they represent a single phase of pedogenesis after terrace formation. Composite profiles are more problematic. Pedogenic calcretes that form within them may inherit carbonate from calcrete horizons occurring lower down in the terrace sediments. In addition erosion may lead to the exhumation of older calcretes within the terrace sediment. Calcrete ‘inheritance’ may make pedogenic horizons appear more mature than they actually are and produce horizons containing carbonate embracing a range of ages. Calcrete exhumation exposes calcrete horizons whose morphology and radiometric ages are wholly unrelated to terrace surface age. Composite profiles are, therefore, only suitable for chronological studies if the pedogenic horizon capping the terrace sequence can be clearly distinguished from earlier calcrete‐forming events. Thus, a detailed morphological/micro‐morphological study is required before any chronological study is undertaken. This is the only way to establish whether particular calcrete profiles are suitable for dating purposes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
63.
Water and sediment outbursts from advanced Franz Josef Glacier,New Zealand   总被引:1,自引:0,他引:1  
The Franz Josef Glacier, Westland, New Zealand, has a history of catastrophic sediment‐laden outburst ?oods associated with extreme rainfall events when the glacier toe is advanced over its own sediments. Consideration of these events and inspection of recent sediment deposits suggest that there are three distinct modes of outburst. The ?rst is associated with fans fed by over?ow along the glacier margin. As the glacier has advanced across its own fore?eld gravels, it is inferred that the primary drainage conduit has developed a reach of negative slope. In high ?ows massive boulders can block the conduit, trapping lesser clasts. The resulting backup of water causes over?ows through marginal moulins, producing the fan type of deposit. The second type of outburst deposits massive imbricated boulders at a greater or lesser distance from the glacier portal. In this case, pressure buildup drives the blockage out of the portal where the boulders deposit. Smaller materials are generally carried away. The third type consists of very shallow ?ows, and produces massive gravel deposits of uncertain provenance. In this condition, the excess pressure in the conduit results in slight uplift of the glacier and widespread discharge of water and sediment below the glacier snout; gravels and smaller sediments are laid down in a massive deposit across the fore?eld. The massive, boulder‐veneered deposit from the December 1995 outburst is interpreted in the light of the above mechanisms as a hyperconcentrated ?ow deposit from hydraulic jacking, overlain by boulders emplaced by a subsequent conduit outburst. A possible association of outbursts with the present advanced position of the glacier is suggested. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
64.
Topographic interactions generate multidirectional and unsteady air?ow that limits the application of velocity pro?le approaches for estimating sediment transport over dunes. Results are presented from a series of wind tunnel simulations using Irwin‐type surface‐mounted pressure sensors to measure shear stress variability directly at the surface over both isolated and closely spaced sharp‐crested model dunes. Findings complement existing theories on secondary air?ow effects on stoss transport dynamics and provide new information on the in?uence of lee‐side air?ow patterns on dune morphodynamics. For all speeds investigated, turbulent unsteadiness at the dune toe indicates a greater, more variable surface shear, despite a signi?cant drop in time‐averaged measurements of streamwise shear stress at this location. This effect is believed suf?cient to inhibit sediment deposition at the toe and may be responsible for documented intermittency in sand transport in the toe region. On the stoss slope, streamline compression and ?ow acceleration cause an increase in ?ow steadiness and shear stress to a maximum at the crest that is double that at the toe of the isolated dune and 60–70 per cent greater than at ?ow reattachment on the lower stoss of closely spaced dunes. Streamwise ?ow accelerations, rather than turbulence, have greater in?uence on stress generation on the stoss and this effect increases with stoss slope distance and with incident wind speed. Reversed ?ow within the separation cell generates signi?cant surface shear (30–40 per cent of maximum values) for both spacings. This supports ?eld studies that suggest reversed ?ow is competent enough to return sediment to the dune directly or in a de?ected direction. High variability in shear at reattachment indicates impact of a turbulent shear layer that, despite low values of time‐averaged streamwise stress in this region, would inhibit sediment accumulation. Downwind of reattachment, shear stress and ?ow steadiness increase within 6 h (h = dune height) of reattachment and approach upwind values by 25 h. A distance of at least 30 h is suggested for full boundary layer recovery, which is comparable to ?uvial estimates. The Irwin sensor used in this study provides a reliable means to measure skin friction force responsible for sand transport and its robust, simple, and cost‐effective design shows promise for validating these ?ndings in natural dune settings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
65.
ABSTRACT In situ measurements of lakebed sediment erodibility were made on three sites in Hamilton Harbour, Lake Ontario, using the benthic flume Sea Carousel. Three methods of estimating the surface erosion threshold (τc(0)) from a Carousel time series were evaluated: the first method fits measures of bed strength to eroded depth (the failure envelope) and evaluates threshold as the surface intercept; the second method regresses mean erosion rate (Em) with bed shear stress and solves for the floc erosion rate (Ef) to derive the threshold for Em = Ef = 1 × 10?5 kg m?2 s?1; the third method extrapolates a regression of suspended sediment concentration (S) and fluid transmitted bed shear stress (τ0) to ambient concentrations. The first field site was undisturbed (C) and acted as a control; the second (W) was disturbed through ploughing and water injection as part of lakebed treatment, whereas the third site (OIP) was disturbed and injected with an oxidant used for remediation of contaminated sediment. The main objectives of this study were: (1) to evaluate the three different methods of deriving erosion threshold; (2) to compare the physical behaviour of lacustrine sediments with their marine estuarine counterparts; and (3) to examine the effects of ploughing and chemical treatment of contaminated sediment on bed stability. Five deployments of Sea Carousel were carried out at the control site. Mean erosion thresholds for the three methods were: τc(0) = 0·5 (±0·06), 0·27 (±0·01) and 0·34 (±0·03) Pa respectively. Method 1 overpredicted bed strength as it was insensitive to effects in the surface 1–2 mm, and the fit of the failure envelope was also highly subjective. Method 2 exhibited a wide scatter in the data (low correlation coefficients), and definition of the baseline erosion rate (Ef) is largely arbitrary in the literature. Method 3 yielded stable (high correlation coefficients), reproducible and objective results and is thus recommended for evaluation of the erosion threshold. The results of this method correlated well with sediment bulk density and followed the same trend as marine counterparts from widely varying sites. Mass settling rates, expressed as a decay constant, k, of S(t), were strongly related to the maximum turbidity at the onset of settling (Smax) and were also in continuity with marine counterparts. Thus, it appears that differences in salinity had little effect on mass settling rates in the examples presented, and that biological activity dominated any effects normally attributable to changes in salinity. Bedload transport of eroded aggregates (2–4 mm in diameter) took place by rolling below a mean tangential flow velocity (Uy) of 0·32 ms?1 and by saltation at higher velocities. Mass transport as bedload was a maximum at Uy = 0·4 ms?1, although bedload never exceeded 1% of the suspended load. The proportion of material moving as bedload was greatest at the onset of erosion but decreased as flow competence increased. Given the low bulk density and strength of the lakebed sediment, the presence of a bedload component is notable. Bedload transport over eroding cohesive substrates should be greater in estuaries, where both sediment density and strength are usually higher. Significant differences between the ploughed and control sites were apparent in both the erosion rate and the friction coefficient (φ), and suggest that bed recovery after disruption is rapid (< 24 h). τc(0) increased linearly with time after ploughing and recovered to the control mean value within 3 days. The friction coefficient was reduced to zero by ploughing (diagnostic of fluidization), but increased linearly with time, regaining control values within 6 days. No long‐term reduction in bed strength due to remediation was apparent.  相似文献   
66.
The electrical structure of the Slave craton   总被引:4,自引:0,他引:4  
The Slave craton in northwestern Canada, a relatively small Archean craton (600×400 km), is ideal as a natural laboratory for investigating the formation and evolution of Mesoarchean and Neoarchean sub-continental lithospheric mantle (SCLM). Excellent outcrop and the discovery of economic diamondiferous kimberlite pipes in the centre of the craton during the early 1990s have led to an unparalleled amount of geoscientific information becoming available.

Over the last 5 years deep-probing electromagnetic surveys were conducted on the Slave, using the natural-source magnetotelluric (MT) technique, as part of a variety of programs to study the craton and determine its regional-scale electrical structure. Two of the four types of surveys involved novel MT data acquisition; one through frozen lakes along ice roads during winter, and the second using ocean-bottom MT instrumentation deployed from float planes.

The primary initial objective of the MT surveys was to determine the geometry of the topography of the lithosphere–asthenosphere boundary (LAB) across the Slave craton. However, the MT responses revealed, completely serendipitously, a remarkable anomaly in electrical conductivity in the SCLM of the central Slave craton. This Central Slave Mantle Conductor (CSMC) anomaly is modelled as a localized region of low resistivity (10–15 Ω m) beginning at depths of 80–120 km and striking NE–SW. Where precisely located, it is spatially coincident with the Eocene-aged kimberlite field in the central part of the craton (the so-called “Corridor of Hope”), and also with a geochemically defined ultra-depleted harzburgitic layer interpreted as oceanic or arc-related lithosphere emplaced during early tectonism. The CSMC lies wholly within the NE–SW striking central zone defined by Grütter et al. [Grütter, H.S., Apter, D.B., Kong, J., 1999. Crust–mantle coupling; evidence from mantle-derived xenocrystic garnets. Contributed paper at: The 7th International Kimberlite Conference Proceeding, J.B. Dawson Volume, 1, 307–313] on the basis of garnet geochemistry (G10 vs. G9) populations.

Deep-probing MT data from the lake bottom instruments infer that the conductor has a total depth-integrated conductivity (conductance) of the order of 2000 Siemens, which, given an internal resistivity of 10–15 Ω m, implies a thickness of 20–30 km. Below the CSMC the electrical resistivity of the lithosphere increases by a factor of 3–5 to values of around 50 Ω m. This change occurs at depths consistent with the graphite–diamond transition, which is taken as consistent with a carbon interpretation for the CSMC.

Preliminary three-dimensional MT modelling supports the NE–SW striking geometry for the conductor, and also suggests a NW dip. This geometry is taken as implying that the tectonic processes that emplaced this geophysical–geochemical body are likely related to the subduction of a craton of unknown provenance from the SE (present-day coordinates) during 2630–2620 Ma. It suggests that the lithospheric stacking model of Helmstaedt and Schulze [Helmstaedt, H.H., Schulze, D.J., 1989. Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. In Ross, J. (Ed.), Kimberlites and Related Rocks, Vol. 1: Their Composition, Occurrence, Origin, and Emplacement. Geological Society of Australia Special Publication, vol. 14, 358–368] is likely correct for the formation of the Slave's current SCLM.  相似文献   

67.
68.
Abstract The Joggins Formation was deposited in the Cumberland Basin, which experienced rapid mid‐Carboniferous subsidence on bounding faults. A 600 m measured section of coastal and alluvial plain strata comprises cycles tens to hundreds of metres thick. The cycles commence with coal and fossiliferous limestone/siltstone intervals, interpreted as widespread flooding events. These intervals are overlain by coarsening‐upward successions capped by planar‐based sandstone mounds, up to 100 m in width that represent the progradation of small, river‐generated delta lobes into a standing body of open water developed during transgression. The overlying strata contain sand‐rich heterolithic packages, 1–8 m thick, that are associated with channel bodies 2–3 m thick and 10–50 m wide. Drifted plant debris, Calamites groves and erect lycopsid trees are preserved within these predominantly green‐grey heterolithic sediments, which were deposited on a coastal wetland or deltaic plain traversed by channel systems. The cycles conclude with red siltstones, containing calcareous nodules, that are interbedded with thin sandstones and associated with both single‐storey channel bodies (1–1·5 m thick and 2–3 m wide) and larger, multistorey channels (3–6 m thick) with incised margins. Numerous channel bodies at the same level suggest that multiple‐channel, anastomosed river systems were developed on a well‐drained floodplain. Many minor flooding surfaces divide the strata into parasequences with dominantly progradational and aggradational stacking patterns. Multistorey channel bodies are relatively thin, fine grained and modestly incised, and palaeosols are immature and cumulative. The abundance and prominence of flooding surfaces suggests that base‐level rise was enhanced, whereas the lack of evidence for abrupt basinward stepping of facies belts, coupled with the absence of strong fluvial incision and mature palaeosols, suggests that base‐level fall was suppressed. These architectural features are considered to reflect a tectonic architectural signature, in accordance with the high‐subsidence basinal setting. Evidence for restricted marine influence and variation in floral assemblages suggests modulation by eustatic and climatic effects, although their relative importance is uncertain.  相似文献   
69.
Oblique convergence since the Early Cenozoic between the northward-moving Australian plate, westward-moving Pacific plate and almost stationary Eurasian plate has created a world-ranking tectonic zone in the eastern Indonesia–New Guinea–Southwest Pacific region (Tonga–Sulawesi megashear) that is notorious for its complex mix of tectonic styles and terrane juxtapositions. Unlike an ancient analog—the Mesozoic–Cenozoic Cordillera of North America—palaeomagnetic constraints on terrane motions in the zone are few. To improve the framework of quantitative control on such motions and therefore our understanding of the development of the zone, results of a palaeomagnetic study in the Highlands region of Papua New Guinea (PNG), in the southern part of the New Guinea Orogen, are reported. The study yields new insights into terrane tectonics along the Australian craton's active northern margin and confirms the complexity of block rotations to be expected at the local scale in tectonically intricate zones. The study is based on more than 500 samples (21 localities) collected from an interior and an exterior zone of New Guinea's central cordillera. The two zones are separated by the Tahin and Stolle–Lagaip–Kaugel Fault zones and collectively represent the para-autochthonous northern margin of the Australian craton. Samples from the interior zone, which in the study area comprises a cratonic spur of uncertain—probably displaced—origin, come from Triassic to Miocene sediments and subordinate volcanics of the Kubor Anticline, Jimi Terrane, and Yaveufa Syncline (16 localities) in the central and eastern Highlands. Samples from the exterior zone, which represent a basement-involved, Pliocene foreland fold-and-thrust belt, come from Middle Eocene to Middle Miocene carbonates and clastics (five localities) in the southern Highlands of the Papuan Fold Belt. Results permit us to constrain the tectonic evolution of the two zones palaeomagnetically. Using mainly thermal demagnetization techniques, three main magnetic components have been identified in the collection: (1) a recent field overprint of both normal and reverse polarity; (2) a pervasive overprint of mainly normal polarity that originated during extensive Middle to Late Miocene intrusive activity in the central cordillera; and (3) a primary component which has been identified in only 7 of the 21 localities (5 of 11 stratigraphic units represented in the collection). All components show patterns of rotation that are consistent within the zones, but differ between them. In the interior zone (central and eastern Highlands), large-scale counterclockwise rotations of between 30°+ and 100°+ have been established throughout the Kubor Anticline and Jimi Terrane, with some clockwise rotation present in the southern part of the Yaveufa Syncline. In contrast, in the Mendi area of the exterior zone (southern Highlands), clockwise rotations of between 30°+ and 50°+ can be recognized. These contrasting rotation patterns across the Tahin and Stolle–Lagaip–Kaugel Fault zones indicate decoupling of the two tectonic zones, probably along basement-involved faults. The clockwise rotations in the southern Highlands of the Papuan Fold Belt are to be expected from its structural grain, and are probably governed by regional basement faults and transverse lineaments. In contrast, the pattern of counterclockwise rotations in the Kubor Anticline–Jimi Terrane cratonic spur of the central and eastern Highlands was unexpected. The pattern is interpreted to result from non-rigid rotation of continental terranes as they were transported westward across the northeastern margin of the Australian craton. This margin became reorganised after the Middle Miocene, when the steadily northward-advancing Australian craton impinged into the westward-moving Pacific plate/buffer-plate system. Transpressional reorganisation under the influence of the sinistral Tonga–Sulawesi megashear became enhanced with Mio-Pliocene docking, and subsequent southward overthrusting, of the Finisterre Terrane onto the northeastern margin of the Australian craton.  相似文献   
70.
Whole-rock Pb isotopic signatures and U/Pb geochronology refute a Rodinian correlation of northeastern Laurentia and proto-Andean Amazonia. According to this previously proposed model, the Labrador–Scotland–Greenland Promontory (LSGP) of northeastern Laurentia collided with the proto-Andean margin of Amazonia, at the Arica Embayment, during the Grenville/Sunsás Orogeny (ca. 1.0 Ga). Links between the two margins were based upon the correlation of the LSGP with Arequipa-Antofalla Basement (AAB), a Proterozoic block along the proto-Andean margin of Amazonia adjacent to the Arica Embayment. Specifically, similarities in 1.8–1.0 Ga basement rocks in both regions suggested that the AAB was originally a piece of the LSGP. Furthermore, similarities in unique, post-collisional, but pre-rift, glacial sedimentary sequences also supported a link between the AAB and LSGP.Tests of these apparent similarities fail to support correlation of the AAB and the LSGP and, thus, eliminate a direct link between northeastern Laurentia and southwestern Amazonia in Rodinia. However, Pb isotopic compositions and U/Pb geochronology provide the basis for two new correlations, namely, (1) the ca. 1.3–1.0 Ga basement in the central and southern Appalachians may be an allochthonous block that was transferred to Laurentia from Amazonia at ca. 1.0 Ga, and (2) an allochthonous AAB may be a piece of the Kalahari Craton that was transferred to Amazonia at ca. 1.0 Ga. Based on these new correlations and a previously proposed Grenvillian connection between southern Laurentia (Llano) and Kalahari, we propose that Amazonia may have collided with a contiguous southeastern Laurentia/Kalahari margin at ca. 1.0 Ga.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号