首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   13篇
  国内免费   13篇
测绘学   7篇
大气科学   26篇
地球物理   75篇
地质学   91篇
海洋学   78篇
天文学   25篇
综合类   1篇
自然地理   21篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   4篇
  2018年   9篇
  2017年   10篇
  2016年   5篇
  2015年   10篇
  2014年   11篇
  2013年   16篇
  2012年   8篇
  2011年   23篇
  2010年   12篇
  2009年   7篇
  2008年   24篇
  2007年   18篇
  2006年   18篇
  2005年   8篇
  2004年   8篇
  2003年   10篇
  2002年   6篇
  2001年   11篇
  2000年   4篇
  1999年   7篇
  1998年   13篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1963年   1篇
排序方式: 共有324条查询结果,搜索用时 15 毫秒
61.
Abstract To investigate the regional thermobaric structure of the diamondiferous Kokchetav ultrahigh‐pressure and high‐pressure (UHP–HP) massif and adjacent units, eclogite and other metabasites in the Kulet and Saldat–Kol regions, northern Kazakhstan, were examined. The UHP–HP massif is subdivided into four units, bounded by subhorizontal faults. Unit I is situated at the lowest level of the massif and consists of garnet–amphibolite and acidic gneiss with minor pelitic schist and orthogneiss. Unit II, which structurally overlies Unit I, is composed mainly of pelitic schist and gneiss, and whiteschist locally with abundant eclogite blocks. The primary minerals observed in Kulet and Saldat–Kol eclogites are omphacite, sodic augite, garnet, quartz, rutile and minor barroisite, hornblende, zoisite, clinozoisite and phengite. Rare kyanite occurs as inclusions in garnet. Coesite inclusions occur in garnet porphyroblasts in whiteschist from Kulet, which are closely associated with eclogite masses. Unit III consists of alternating orthogneiss and amphibolite with local eclogite masses. The structurally highest unit, Unit IV, is composed of quartzitic schist with minor pelitic, calcareous, and basic schist intercalations. Mineral assemblages and compositions, and occurrences of polymorphs of SiO2 (quartz or coesite) in metabasites and associated rocks in the Kulet and Saldat–Kol regions indicate that the metamorphic grades correspond to epidote–amphibolite, through high‐pressure amphibolite and quartz–eclogite, to coesite–eclogite facies conditions. Based on estimations by several geothermobarometers, eclogite from Unit II yielded the highest peak pressure and temperature conditions in the UHP–HP massif, with metamorphic pressure and temperature decreasing towards the upper and lower structural units. The observed thermobaric structure is subhorizontal. The UHP–HP massif is overlain by a weakly metamorphosed unit to the north and is underlain by the low‐pressure Daulet Suite to the south; boundaries are subhorizontal faults. There is a distinct pressure gap across these boundaries. These suggest that the highest grade unit, Unit II, has been selectively extruded from the greatest depths within the UHP–HP unit during the exhumation process, and that all of the UHP–HP unit has been tectonically intruded and juxtaposed into the adjacent lower grade units at shallower depths of about 10 km.  相似文献   
62.
63.
In low-lying areas of urban and suburban regions in Asia, the use of landfill has allowed urban land use to encroach onto watery landforms, such as back marshes, which were formerly used as rice fields. To improve understanding of the associations between land-use patterns and landfill development, we carried out a case study in the urban fringe of Metro Manila in the Philippines. We examined landfill volume derived from land-use change using GIS, and field surveyed qualitative aspects of the landfill used. We calculated the rate of application of landfill in low-lying housing development areas to be 5.0 × 10m3 km?2 year?1, most of which consisted of offsite disposal of construction waste or crushed rock produced by urban development and renewal on the adjoining uplands. The flow of fill material from offsite sources to onsite landfill development areas was on the basis of individual agreements between suppliers and developers.  相似文献   
64.
Takashikozo is a phenomenon of Quaternary sediments in Japan. They are cylindrical Fe-oxyhydroxide nodules that form as plaques round plant roots, where Fe is preferentially concentrated to develop a solid wall. Structural features suggest that after the roots have decayed, the central space where the roots were situated acts as a flow path for oxidized water. Analysis of microbial 16S rDNA extracted from the nodules identified iron-oxidizing bacteria encrusted round the roots where they are the likely initiators of nodule formation. Direct microscopic observation revealed an accumulation of Fe-oxyhydroxides that fill the pore spaces and is also likely to be linked with the encrusting microbial colonies. Geological history and nanofossil evidence suggest that these Fe-nodules may have been buried at a depth of up to several tens of meters for at least 105 years in reducing Quaternary sediments. Thus Fe-oxyhydroxide nodules that have formed in a geological environment at the interfaces between water and rock by microbial mediation can persist under reducing conditions. If this is the case, the phenomenon is significant as an analogue of post-closure conditions in radioactive waste repositories, since it could influence nuclide migration.  相似文献   
65.
Abstract Multi- and single-channel seismic profiles are used to investigate the structural evolution of back-arc rifting in the intra-oceanic Izu-Bonin Arc. Hachijo and Aoga Shima Rifts, located west of the Izu-Bonin frontal arc, are bounded along-strike by structural and volcanic highs west of Kurose Hole, North Aoga Shima Caldera and Myojin Sho arc volcanoes. Zig-zag and curvilinear faults subdivide the rifts longitudinally into an arc margin (AM), inner rift, outer rift and proto-remnant arc margin (PRA). Hachijo Rift is 65 km long and 20–40 km wide. Aoga Shima Rift is 70 km long and up to 45 km wide. Large-offset border fault zones, with convex and concave dip slopes and uplifted rift flanks, occur along the east (AM) side of the Hachijo Rift and along the west (PRA) side of the Aoga Shima Rift. No cross-rift structures are observed at the transfer zone between these two regions; differential strain may be accommodated by interdigitating rift-parallel faults rather than by strike- or oblique-slip faults. In the Aoga Shima Rift, a 12 km long flank uplift, facing the flank uplift of the PRA, extends northeast from beneath the Myojin Knoll Caldera. Fore-arc sedimentary sequences onlap this uplift creating an unconformity that constrains rift onset to ~1-2Ma. Estimates of extension (~3km) and inferred age suggest that these rifts are in the early syn-rift stage of back-arc formation. A two-stage evolution of early back-arc structural evolution is proposed: initially, half-graben form with synthetically faulted, structural rollovers (ramping side of the half-graben) dipping towards zig-zagging large-offset border fault zones. The half-graben asymmetry alternates sides along-strike. The present ‘full-graben’ stage is dominated by rift-parallel hanging wall collapse and by antithetic faulting that concentrates subsidence in an inner rift. Structurally controlled back-arc magmatism occurs within the rift and PRA during both stages. Significant complications to this simple model occur in the Aoga Shima Rift where the east-dipping half-graben dips away from the flank uplift along the PRA. A linear zone of weakness caused by the greater temperatures and crustal thickness along the arc volcanic line controls the initial locus of rifting. Rifts are better developed between the arc edifices; intrusions may be accommodating extensional strain adjacent to the arc volcanoes. Pre-existing structures have little influence on rift evolution; the rifts cut across large structural and volcanic highs west of the North Aoga Shima Caldera and Aoga Shima. Large, rift-elongate volcanic ridges, usually extruded within the most extended inner rift between arc volcanoes, may be the precursors of sea floor spreading. As extension continues, the fissure ridges may become spreading cells and propagate toward the ends of the rifts (adjacent to the arc volcanoes), eventually coalescing with those in adjacent rift basins to form a continuous spreading centre. Analysis of the rift fault patterns suggests an extension direction of N80°E ± 10° that is orthogonal to the trend of the active volcanic arc (N10°W). The zig-zag pattern of border faults may indicate orthorhombic fault formation in response to this extension. Elongation of arc volcanic constructs may also be developed along one set of the possible orthorhombic orientations. Border fault formation may modify the regional stress field locally within the rift basin resulting in the formation of rift-parallel faults and emplacement of rift-parallel volcanic ridges. The border faults dip 45–55° near the surface and the majority of the basin subsidence is accommodated by only a few of these faults. Distinct border fault reflections decreases dips to only 30° at 2.5 km below the sea floor (possibly flattening to near horizontal at 2.8 km although the overlying rollover geometry shows a deeper detachment) suggesting that these rifting structures may be detached at extremely shallow crustal levels.  相似文献   
66.
Sensitive Ocean Bottom Implanted Tiltmeters (OBITs) with a sophisticated data retrieval system have been developed in order to observe directly the subduction of oceanic lithosphere. The OBIT is the first long-term geophysical instrument which was designed to be deployed by a manned deep-sea submersible. When the OBIT is put on oceanic lithosphere which is bending and is about to subduct under a deep sea trench, the OBIT records the subduction by observing the tilt of the surface of the lithosphere. The OBIT system has a sensitivity of 10-8 radian, which is enough to detect the ongoing subduction in months or years. The OBIT may give an answer to the question whether there are fluctuations in the subduction rate.Two OBITs were successfully deployed on a seaward slope of the Kuril Trench by the newly built French deep submersible, Nautile. The OBITs were installed on the northwest shoulder of Erimo seamount, at a depth of 3930 m, in the Kuril Trench. In order to attain stable long-term observations of crustal deformations, the sensing unit was cemented onto bare rock by mortar. We have not yet had an opportunity to recover the data.The life of the instruments is expected to be more than five years. An acoustic data transmission system has been developed for the OBIT data recovery. The stored data can be retrieved at any moment during the observation period, with no need to retrieve the instruments nor to interrupt the observation, by use of the acoustic system. The acoustic system has a high data transmission rate as well as extremely low power consumption. This will be the first long-term crustal deformation measurement on the sea floor.  相似文献   
67.
Through analysis of monthly in situ hydrographic, tide gauge, altimetry and Kuroshio axis data for the years 1993–2001, the intraannual variability of sea level around Tosa Bay, Japan, with periods of 2–12 months is examined together with the intraannual variability of the Kuroshio south of the bay. It is shown that the intraannual variation of steric height on the slope in Tosa Bay can account for that of sea level at the coast around the bay as well as on this slope. It is found that the steric height (or sea level) variation on the slope in this bay is mainly controlled by the subsurface thermal variation correlated with the Kuroshio variation off Cape Ashizuri, the western edge of Tosa Bay. That is, when the nearshore Kuroshio velocity south of the cape is intensified [weakened] concurrently with the northward [southward] displacement of the current axis, temperature in an entire water column decreases [increases] simultaneously, mainly due to the upward [downward] displacement of isotherms, coincident with that of the main thermocline. It follows that the steric height (or sea level) decreases [increases].  相似文献   
68.
The horizontal components from fourteen Ocean Bottom Seismometers deployed along four profiles focused along the western margin of the Jan Mayen microcontinent, North Atlantic, have been modelled with regard to S-waves, based on P-wave models obtained earlier. The seismic models have furthermore been constrained by 2D gravity modelling. High V p/V s-ratios (2.3–7.9) within the Cenozoic sedimentary section are attributed to significant porosities, whereas V p/V s-ratios in the order of 1.9–2.2 for the Mesozoic and Paleozoic sedimentary rocks indicate shale-dominated lithology throughout the area. The eastern side of the Jan Mayen Ridge is interpreted as a passive, volcanic margin, based on relatively high crustal V p/V s-ratios (1.9), whereas lower V p/V s-ratios (1.75–1.8) suggest the presence of intermediate composition crust and non-volcanic margin on the western side of the ridge. In the westernmost part of the Jan Mayen Basin, slightly increased upper mantle V p/V s-ratios may indicate some degree of serpentization of upper mantle peridotites.  相似文献   
69.
This study presents the modelling of 2-D and 3-D wide-angle seismic data acquired on the complex, volcanic passive margin of the Vøring Plateau, off Norway. Three wide-angle seismic profiles were shot and recorded simultaneously by 21 Ocean Bottom Seismometers, yielding a comprehensive 3-D data set, in addition to the three in-line profiles. Coincident multi-channel seismic profiles are used to better constrain the modelling, but the Mesozoic and deeper structures are poorly imaged due to the presence of flood basalts and sills. Velocity modelling reveals an unexpectedly large 30 km basement high hidden below the flood basalt. When interpreted as a 2-D structure, this basement high produces a modelled gravity anomaly in disagreement with the observed gravity. However, both the gravity and the seismic data suggest that the structure varies in all three directions. The modelling of the entire 3-D set of travel times leads to a coherent velocity structure that confirms the basement high; it also shows that the abrupt transition to the slower Cretaceous basin coincides in position and orientation with the fault system forming the Rån Ridge. The positive gravity anomaly over the Rån Ridge originates from the focussed and coincident elevation of the high velocity lower crust and pre-Cretaceous basement. Although the Moho is not constrained by the seismic data, the gravity modelled from the 3-D velocity model shows a better fit along the profiles. This study illustrates the interest of a 3-D acquisition of wide-angle seismic over complex structures and the benefit of the subsequent integrated interpretation of the seismic and gravity data.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号