首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1475篇
  免费   31篇
  国内免费   19篇
测绘学   16篇
大气科学   151篇
地球物理   400篇
地质学   597篇
海洋学   122篇
天文学   163篇
综合类   4篇
自然地理   72篇
  2021年   12篇
  2018年   26篇
  2017年   14篇
  2016年   31篇
  2015年   18篇
  2014年   38篇
  2013年   47篇
  2012年   36篇
  2011年   58篇
  2010年   41篇
  2009年   55篇
  2008年   57篇
  2007年   40篇
  2006年   49篇
  2005年   41篇
  2004年   39篇
  2003年   33篇
  2002年   50篇
  2001年   22篇
  2000年   21篇
  1999年   20篇
  1998年   28篇
  1997年   24篇
  1996年   23篇
  1995年   25篇
  1994年   13篇
  1993年   22篇
  1991年   15篇
  1990年   17篇
  1989年   16篇
  1988年   12篇
  1987年   15篇
  1986年   14篇
  1985年   25篇
  1984年   23篇
  1983年   24篇
  1982年   23篇
  1981年   17篇
  1980年   16篇
  1979年   26篇
  1978年   21篇
  1977年   19篇
  1976年   17篇
  1975年   14篇
  1974年   13篇
  1973年   18篇
  1959年   15篇
  1956年   11篇
  1954年   12篇
  1948年   13篇
排序方式: 共有1525条查询结果,搜索用时 15 毫秒
991.
Abstract

Marked oscillations in wind speed, wind direction and pressure with periods of between 5 and 15 minutes were recorded on a number of occasions and it is assumed that they were produced by atmospheric gravity waves. Gossard and Munk (1954) have shown that the phase velocity of a gravity wave can be calculated using wind and pressure fluctuation data from a single station by means of the “impedance equation”. It is also possible to measure the phase velocity of a gravity wave using an array of microbarovariographs. In this investigation, the phase velocity of gravity waves calculated using these two different methods are compared and the feasibility of deriving wave characteristics from single point measurements is discussed. The results show that, while in a few isolated cases the two velocities agree reasonably well, the application of the impedance equation to data from a single station is limited due to the superposition of local wind systems upon the wave-induced perturbations.  相似文献   
992.
Rapid ‘swing’, compass variations O(10°) in O(10 s), and ‘spin’, complete rotations around the vertical axis within a few minutes, are a concern of acoustic current meters moored in-line. Observations are used from fast sampling, at once per 1 and 30 s, instrumentation on deep-ocean moorings mainly outside surface wave and bottom boundary influences. Such instruments do not require a vane common to some historic mechanical current meters and they are often moored in a much easier to handle sub-surface buoy or mounting rack, without vanes. In their mountings they are nearly symmetric, so that they can spin freely in (turbulent; shear) flows. A comparison is made between noise levels of such free spinning instrumentation with those of instruments mounted in a fixed bottom-frame and with those of instruments equipped with a vane to one side. Typical spinning has a single rotation varying between 40 and 200 s. Spinning is shown to be highly binary: on or off. Its effects are found negligible on estimates of ocean currents, provided compass updates are adequate as in existing instrumentation. Acoustic noise is O(10) times larger than noise due to spinning. Some effects of spinning are noticed in the acoustic echo amplitude showing higher noise at frequencies >100 cpd, cycles per day. The character of this noise changes dramatically due to spinning. However, it is mainly in the ocean turbulence range and does not affect measurements of internal waves or periodic zooplankton motions.  相似文献   
993.
The prevailing view suggests that the Eemian interglacial on the European Plain was characterized by largely negligible geomorphic activity beyond the coastal areas. However, systematic geomorphological studies are sparse. Here we present a detailed reconstruction of Eemian to Early Weichselian landscape evolution in the vicinity of a small fingerlake on the northern margin of the Salzwedel Palaeolake in Lower Saxony (Germany). We apply a combination of seismics, sediment coring, pollen analysis and luminescence dating on a complex sequence of colluvial, paludal and lacustrine sediments. Results suggest two pronounced phases of geomorphic activity, directly before the onset and at the end of the Eemian period, with an intermediate period of pronounced landscape stability. The dynamic phases were largely driven by incomplete vegetation cover, but likely accentuated by fluvial incision in the neighbouring Elbe Valley. Furthermore, we discovered Neanderthal occupation at the lakeshore during Eemian pollen zone (PZ) E IV, which is chronologically in line with other known Eemian sites of central Europe. Our highly-resolved spatio-temporal data substantially contribute to the understanding of climate-induced geomorphic processes throughout and directly after the last interglacial period. It helps unraveling the landscape dynamics between the coastal areas to the north and the loess belt to the south.  相似文献   
994.
995.
996.
For absolute magnitudes greater than the current completeness limit of H-magnitude ∼15 the main asteroid belt's size distribution is imperfectly known. We have acquired good-quality orbital and absolute H-magnitude determinations for a sample of small main-belt asteroids in order to study the orbital and size distribution beyond H=15, down to sub-kilometer sizes (H>18). Based on six observing nights over a 11-night baseline we have detected, measured photometry for, and linked observations of 1087 asteroids which have one-week time baselines or more. The linkages allow the computation of full heliocentric orbits (as opposed to statistical distances determined by some past surveys). Judged by known asteroids in the field the typical uncertainty in the (a/e/i) orbital elements is less than 0.03 AU/0.03/0.5°. The distances to the objects are sufficiently well known that photometric uncertainties (of 0.3 magnitudes or better) dominate the error budget of their derived H-magnitudes. The detected asteroids range from HR=12-22 and provide a set of objects down to sizes below 1 km in diameter. We find an on-sky surface density of 210 asteroids per square degree in the ecliptic with opposition magnitudes brighter than mR=23, with the cumulative number of asteroids increasing by a factor of 100.27/mag from mR=18 down to the mR?23.5 limit of our survey. In terms of absolute H magnitudes, we find that beyond H=15 the belt exhibits a constant power-law slope with the number increasing proportional to 100.30H from H?15 to 18, after which incompleteness begins in the survey. Examining only the subset of detections inside 2.5 AU, we find weak evidence for a mildly shallower slope for H=15-19.5. We provide the information necessary such that anyone wishing to model the main asteroid belt can compare a detailed model to our detected sample.  相似文献   
997.
We present Monte Carlo simulations of the dynamical evolution of the Oort cloud over the age of the Solar System, using an initial sample of one million test comets without any cloning. Our model includes perturbations due to the Galactic tide (radial and vertical) and passing stars. We present the first detailed analysis of the injection mechanism into observable orbits by comparing the complete model with separate models for tidal and stellar perturbations alone. We find that a fundamental role for injecting comets from the region outside the loss cone (perihelion distance q > 15 AU) into observable orbits (q < 5 AU) is played by stellar perturbations. These act in synergy with the tide such that the total injection rate is significantly larger than the sum of the two separate rates. This synergy is as important during comet showers as during quiescent periods and concerns comets with both small and large semi-major axes. We propose different dynamical mechanisms to explain the synergies in the inner and outer parts of the Oort Cloud. We find that the filling of the observable part of the loss cone under normal conditions in the present-day Solar System rises from <1% for a < 20 000 AU to about 100% for a ? 100 000 AU.  相似文献   
998.
Sphalerite (ZnS) is an abundant ore mineral and an important carrier of elements such as Ge, Ga and In used in high‐technology applications. In situ measurements of trace elements in natural sphalerite samples using LA‐ICP‐MS are hampered by a lack of homogenous matrix‐matched sulfide reference materials available for calibration. The preparation of the MUL‐ZnS1 calibration material containing the trace elements V, Cr, Mn, Co, Ni, Cu, Ga, Ge, As, Se, Mo, Ag, Cd, In, Sn, Sb, Tl and Pb besides Zn, Fe and S is reported. Commercially available ZnS, FeS, CdS products were used as the major components, whereas the trace elements were added by doping with single‐element ICP‐MS standard solutions and natural mineral powders. The resulting powder mixture was pressed to pellets and sintered at 400 °C for 100 h using argon as an inert gas. To confirm the homogeneity of major and trace element distributions within the MUL‐ZnS1 calibration material, measurements were performed using EPMA, solution ICP‐MS, ICP‐OES and LA‐ICP‐MS. The results show that MUL‐ZnS‐1 is an appropriate material for calibrating trace element determination in sphalerite using LA‐ICP‐MS.  相似文献   
999.
The compressibility behaviour of loose and contracting granular assemblies, normally consolidated and overconsolidated, under isotropic drained compression is investigated in this paper. Short cylindrical samples of water-saturated monodisperse glass beads, initially assembled in loose state by moist-tamping technique, are isotropically compressed in a classical axisymmetric triaxial machine. Very loose glass bead samples experience numerous unexpected events, sometimes cascading, under undetermined triggered effective isotropic stress in loading and in unloading, while the classical compressibility behaviour of granular material is recovered once these events ignored. Each event, resembling the stick–slip instability during shear in triaxial compression, is characterized by a transient dynamic phase I with very fast drop of effective isotropic stress \(\sigma ^{'}\) due to an excess pore pressure development at nearly constant volume and constant axial strain, followed by a quasi-static phase II with gradual increase in axial \(\varepsilon _\mathrm{a}\) (contraction) and volumetric \(\varepsilon _\mathrm{v}\) (compaction) strain, and a full progressive recovery of \(\sigma ^{'}\) to the previous level before event. A short-lived liquefaction with null \(\sigma ^{'}\) measured in the first phase I results in a local collapse state. Collapse events also happen on unsaturated moist and dry states. Rare events even occur during the unloading of subsequent isotropic compression cycles. The effects of triggered isotropic stress are discussed, the instability characteristics measured, the comparison with stick–slip instability made and the hypothesis of micro-structural instability with local collapse of contact networks and rapid micro-structural rearrangement argued.  相似文献   
1000.
The electrical conductivity of aqueous fluids containing 0.01, 0.1, and 1 M NaCl was measured in an externally heated diamond cell to 600 °C and 1 GPa. These measurements therefore more than double the pressure range of previous data and extend it to higher NaCl concentrations relevant for crustal and mantle fluids. Electrical conductivity was generally found to increase with pressure and fluid salinity. The conductivity increase observed upon variation of NaCl concentration from 0.1 to 1 M was smaller than from 0.01 to 0.1 M, which reflects the reduced degree of dissociation at high NaCl concentration. Measured conductivities can be reproduced (R 2 = 0.96) by a numerical model with log \(\sigma\) = ?1.7060– 93.78/T + 0.8075 log c + 3.0781 log \(\rho\) + log \(\varLambda\) 0(T, \(\rho\)), where \(\sigma\) is the conductivity in S m?1, T is temperature in K, c is NaCl concentration in wt%, \(\rho\) is the density of pure water (in g/cm3) at given pressure and temperature, and \(\varLambda\) 0 (T, \(\rho\)) is the molar conductivity of NaCl in water at infinite dilution (in S cm2 mol?1), \(\varLambda\) 0 = 1573–1212 \(\rho\) + 537 062/T–208 122 721/T 2. This model allows accurate predictions of the conductivity of saline fluids throughout most of the crust and upper mantle; it should not be used at temperatures below 100 °C. In general, the data show that already a very small fraction of NaCl-bearing aqueous fluid in the deep crust is sufficient to enhance bulk conductivities to values that would be expected for a high degree of partial melting. Accordingly, aqueous fluids may be distinguished from hydrous melts by comparing magnetotelluric and seismic data. H2O–NaCl fluids may enhance electrical conductivities in the deep crust with little disturbance of v p or v p/v s ratios. However, at the high temperatures in the mantle wedge above subduction zones, the conductivity of hydrous basaltic melts and saline aqueous fluids is rather similar, so that distinguishing these two phases from conductivity data alone is difficult. Observed conductivities in forearc regions, where temperatures are too low to allow melting, may be accounted for by not more than 1 wt% of an aqueous fluid with 5 wt% NaCl, if this fluid forms a continuous film or fills interconnected tubes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号