首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   13篇
大气科学   15篇
地球物理   51篇
地质学   65篇
海洋学   35篇
天文学   89篇
综合类   1篇
自然地理   10篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   7篇
  2018年   16篇
  2017年   10篇
  2016年   16篇
  2015年   12篇
  2014年   13篇
  2013年   9篇
  2012年   6篇
  2011年   10篇
  2010年   19篇
  2009年   13篇
  2008年   15篇
  2007年   8篇
  2006年   7篇
  2005年   11篇
  2004年   11篇
  2003年   6篇
  2002年   8篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
排序方式: 共有266条查询结果,搜索用时 437 毫秒
81.
A new assessment system for macrophytes and phytobenthos in German rivers meeting the requirements of the Water Framework Directive (WFD) of the European Community is described. Biocoenotic types based on biological, chemical and hydromorphological data from over 200 river sites covering the main ecoregions, hydromorphological stream types and degradation forms have been defined. For developing a classification system the quality element macrophytes and phytobenthos was divided into three components: macrophytes, benthic diatoms and remaining phytobenthos. For macrophytes seven types including one subtype, for benthic diatoms 14 types including three subtypes and for the remaining phytobenthos five river types were identified. The benthic vegetation at reference condition was described for most of the river types. Degradation is characterised as deviation in benthic vegetation species composition and abundance from the reference biocoenosis. For classification in five ecological status classes, several metrics were developed and used in combination with existing indices. For some of the described river types additional investigations are necessary before a classification system can be developed.  相似文献   
82.
The Raspas Metamorphic Complex of southwestern Ecuador is regarded as the southernmost remnant of oceanic and continental terranes accreted in the latest Jurassic–Early Cretaceous. It consists of variably metamorphosed rock types. (1) Mafic and ultramafic rocks metamorphosed under high-pressure (HP) conditions (eclogite facies) show oceanic plateau affinities with flat REE chondrite-normalized patterns, Nd150 Ma ranging from +4.6 to 9.8 and initial Pb isotopic ratios intermediate between MORB and OIB. (2) Sedimentary rocks metamorphosed under eclogitic conditions exhibit LREE enriched patterns, strong negative Eu anomalies, Rb, Nb, U, Th, Pb enrichments, low Nd150 Ma values (from −6.4 to −9.5), and high initial 87Sr/86Sr and 206,207,208Pb/204Pb isotopic ratios suggesting they were originally sediments derived from the erosion of an old continental crust. (3) Epidote-bearing amphibolites show N-MORB affinities with LREE depleted patterns, LILE, Zr, Hf and Th depletion, high Nd150 Ma (>+10) and low initial Pb isotopic ratios.The present-day well defined internal structure of the Raspas Metamorphic Complex seems to be inconsistent with the formerly proposed interpretation of a “tectonic mélange”. The association of oceanic plateau rocks and continent-derived sediments both metamorphosed in HP conditions suggests that the thin edge of the oceanic plateau first entered the subduction zone and dragged sediments downward of the accretionary wedge along the Wadatti–Benioff zone. Subsequently, when its thickest part arrived into the subduction zone, the oceanic plateau jammed the subduction processes, due to its high buoyancy.In Ecuador and Colombia, the latest Jurassic–Early Cretaceous suture involves HP oceanic plateau rocks and N-MORB rocks metamorphosed under lower grades, suggesting a composite or polyphase nature for the latest Jurassic–Early Cretaceous accretionary event.  相似文献   
83.
84.
85.
A banded amphibolite sequence of alternating ultramafic, mafic (amphibolite) and silicic layers, tectonically enclosed within Variscan migmatites, outcrops at Monte Plebi (NE Sardinia) and shows similarities with leptyno-amphibolite complexes. The ultramafic layers consist of amphibole (75–98%), garnet (0–20%), opaque minerals (1–5%) and biotite (0–3%). The mafic rocks are made up of amphibole (65–80%), plagioclase (15–30%), quartz (0–15%), opaque minerals (2–3%) and biotite (0–2%). The silicic layers consist of plagioclase (60–75%), amphibole (15–30%) and quartz (10–15%). Alteration, metasomatic, metamorphic and hydrothermal processes did not significantly modify the original protolith chemistry, as proved by a lack of K2O-enrichment, Rb-enrichment, CaO-depletion, MgO-depletion and by no shift in the rare earth element (REE) patterns. Field, geochemical and isotopic data suggest that ultramafic, mafic and silicic layers represent repeated sequences of cumulates, basic and acidic rocks similar to macrorhythmic units of mafic silicic layered intrusions. The ultramafic layers recall the evolved cumulates of Skaergaard and Pleasant Bay mafic silicic layered intrusions. Mafic layers resemble Thingmuli tholeiites and chilled Pleasant Bay mafic rocks. Silicic layers with Na2O: 4–6 wt%, SiO2: 67–71 wt% were likely oligoclase-rich adcumulates common in many mafic silicic layered intrusions. Some amphibolite showing a strong Ti-, P-depletion and REE-depletion are interpreted as early cumulates nearly devoid of ilmenite and phosphates. All Monte Plebi rocks have extremely low Nb, Ta, Zr, Hf content and high LILE/HFSE ratios, a feature inherited from the original mantle sources. The mafic and ultramafic layers show slight and strong LREE enrichment respectively. Most mafic layer samples plot in the field of continental tholeiites in the TiO2–K2O–P2O5 diagram and are completely different from N-MORB, E-MORB and T-MORB as regards REE patterns and Nd, Sr isotope ratios but show analogies with Siberian, Deccan and proto-Atlantic rift tholeiites. Comparisons with Thingmuli, Skaergaard and Kiglapait rocks and with experimental data suggest that the Monte Plebi intrusion was an open-to-oxygen system with fO2 FMQ. Mafic and ultramafic samples yielded Nd(460)=+0.79 /+3.06 and 87Sr/86Sr=0.702934–0.703426, and four silicic samples Nd(460)=–0.53/–1.13; 87Sr/86Sr=0.703239–0.703653. Significant differences in Nd isotope ratios between mafic and silicic rocks prove that both groups evolved separately in deeper magma chambers, from different mantle sources, with negligible interaction with crustal material, and were later repeatedly injected within a shallower magma chamber. The spectrum of Sr and Nd isotope data is consistent with a slightly enriched mantle metasomatized during an event earlier than 460 Ma. The metasomatising component was represented by alkali-Th-rich fluids of crustal origin rather than by sedimentary materials, able to modify alkali and Sr–Nd isotope systematics. Monte Plebi layered amphibolites might represent the first example of a strongly metamorphosed fragment of an early Paleozoic mafic silicic layered intrusion emplaced in a thinning continental crust and then tectonically dismembered by Variscan orogeny.  相似文献   
86.
Recently several studies have jointly analysed data from different cosmological probes with the motivation of estimating cosmological parameters. Here we generalize this procedure to allow freedom in the relative weights of various probes. This is done by including in the joint χ 2 function a set of 'hyper-parameters', which are dealt with using Bayesian considerations. The resulting algorithm, which assumes uniform priors on the log of the hyper-parameters, is very simple: instead of minimizing     (where     is per data set j ) we propose to minimize     (where N j is the number of data points per data set j ). We illustrate the method by estimating the Hubble constant H 0 from different sets of recent cosmic microwave background (CMB) experiments (including Saskatoon, Python V, MSAM1, TOCO and Boomerang ). The approach can be generalized for combinations of cosmic probes, and for other priors on the hyper-parameters.  相似文献   
87.
Linné is a simple crater, with a diameter of 2.23 km and a depth of 0.52 km, located in northwestern Mare Serenitatis. Recent high‐resolution data acquired by the Lunar Reconnaissance Orbiter Camera revealed that the shape of this impact structure is best described by an inverted truncated‐cone. We perform morphometric measurements, including slope and profile curvature, on the Digital Terrain Model of Linné, finding the possible presence of three subtle topographic steps, at the elevation of +20, ?100, and ?200 m relative to the target surface. The kink at ?100 m might be related to the interface between two different rheological layers. Using the iSALE shock physics code, we numerically model the formation of Linné crater to derive hints on the possible impact conditions and target physical properties. In the initial setup, we adopt a basaltic projectile impacting the Moon with a speed of 18 km s?1. For the local surface, we consider either one or two layers, in order to test the influence of material properties or composite rheologies on the final crater morphology. The one‐layer model shows that the largest variations in the crater shape take place when either the cohesion or the friction coefficient is varied. In particular, a cohesion of 10 kPa marks the threshold between conical‐ and parabolic‐shaped craters. The two‐layer model shows that the interface between the two layers would be exposed at the observed depth of 100 m when an intermediate value (~200 m) for the upper fractured layer is set. We have also found that the truncated‐cone morphology of Linné might originate from an incomplete collapse of the crater wall, as the breccia lens remains clustered along the crater walls, while the high‐albedo deposit on the crater floor can be interpreted as a very shallow lens of fallout breccia. The modeling analysis allows us to derive important clues on the impactor size (under the assumption of a vertical impact and collision velocity equal to the mean value), and on the approximate, large‐scale preimpact target properties. Observations suggest that these large‐scale material properties likely include some important smaller scale variations, disclosed as subtle morphological steps in the crater walls. Furthermore, the modeling results allow advancing some hypotheses on the geological evolution of the Mare Serenitatis region where Linné crater is located (unit S14). We suggest that unit S14 has a thickness of at least a few hundreds of meters up to about 400 m.  相似文献   
88.
89.
The published version 1.0 of the new Italian strong-motion database ITACA (Italian ACcelerometric Archive, ) includes to date (December 2010) about 4,000 three-component waveforms up to M 6.9, from more than 1,800 earthquakes up to 6.9, recorded by about 400 stations in the period 1972–2009. The uncorrected and corrected strong motion data are archived and can be retrieved with their metadata, concerning events, stations and waveforms. The aim of this paper is to present the procedures for processing the records included in ITACA, accounting for the heterogeneity of this data set, both in terms of quality and amplitude of records as well as illustrating the main features of the ITACA strong-motion dataset. Later, we focus on the “exceptional” ground-motion records, that we, conventionally, denote as those having peak acceleration and peak velocity larger than 300 cm/s2 and 15 cm/s, respectively. These records are less than 2% of the whole ITACA dataset but they are the most relevant for the seismic hazard and engineering implications. Such large peak values, recorded at distances up to 30 km, are related not only to the strongest Italian earthquakes, but also to events with magnitude down to 4. Furthermore, we investigate the dependence of the largest peak values on horizontal and vertical directions and on source-to-site distance.  相似文献   
90.
Continental slope terraces at the southern Argentine margin are part of a significant contourite depositional system composed of a variety of drifts, channels, and sediment waves. Here, a refined seismostratigraphic model for the sedimentary development of the Valentin Feilberg Terrace located in ~4.1?km water depth is presented. Analyzing multichannel seismic profiles across and along this terrace, significant changes in terrace morphology and seismic reflection character are identified and interpreted to reflect variations in deep water hydrography from Late Miocene to recent times, involving variable flow of Antarctic Bottom Water and Circumpolar Deep Water. A prominent basin-wide aggradational seismic unit is interpreted to represent the Mid-Miocene climatic optimum (~17?C14?Ma). A major current reorganization can be inferred for the time ~14?C12?Ma when the Valentin Feilberg Terrace started growing due to the deposition of sheeted and mounded drifts. After ~12?Ma, bottom water flow remained vigorous at both margins of the terrace. Another intensification of bottom flow occurred at ~5?C6?Ma when a mounded drift, moats, and sediment waves developed on the terrace. This may have been caused by a general change in deep water mass organization following the closure of the Panamanian gateway, and a subsequent stronger southward flow of North Atlantic Deep Water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号