首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   15篇
  国内免费   1篇
测绘学   4篇
大气科学   12篇
地球物理   46篇
地质学   72篇
海洋学   8篇
天文学   30篇
自然地理   4篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   10篇
  2017年   11篇
  2016年   17篇
  2015年   4篇
  2014年   14篇
  2013年   7篇
  2012年   5篇
  2011年   11篇
  2010年   6篇
  2009年   9篇
  2008年   4篇
  2007年   9篇
  2006年   9篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
  1962年   1篇
排序方式: 共有176条查询结果,搜索用时 0 毫秒
171.
The Tropical Rainfall Measuring Mission (TRMM) is a joint space mission between NASA and the Japan Aerospace Exploration Agency (JAXA) designed to monitor and study tropical rainfall. In this study, the daily rainfall from TRMM has been utilized to simulate the soil moisture content up to 30 cm vertical soil profile of at an interval depth of 15 cm by using the HYDRUS 1D numerical model for the three plots. The simulated soil moisture content using ground-based rainfall and TRMM-derived rainfall measurements indicate an agreeable goodness of fit between the both. The Nash–Sutcliffe efficiency using ground-based and TRMM-derived rainfall was found in the range of 0.90–0.68 and 0.70–0.40, respectively. The input data sensitivity analysis of precipitation combined with different irrigation treatment indicates a high dependency of soil moisture content with rainfall input. The overall analysis reveals that TRMM rainfall is promising for soil moisture prediction in absence of ground-based measurements of soil moisture.  相似文献   
172.
In the northeast of Zakho City, Northern Iraq, the host rocks of Pb–Zn deposits are composed predominantly of dolomites with subordinate dolomitic limestone intervals. This study is focused on the dolomites of the Bekhme Formation (Upper Campanian) carbonate-hosted Pb–Zn deposits. The amount of dolomites, however, increases toward the mineralized zone. Dolomites are dominated by replacement dolomite with minor dolomite cements. Petrography study allowed identification of six different dolomite textures. These are (1) fine crystalline, planar-s (subhedral) dolomite, RD1; (2) medium to coarse crystalline, planar-e (euhedral) to planar-s (subhedral) dolomites, RD2; (3) medium crystalline, planar-s (subhedral) to nonplanar-a (anhedral) dolomites, RD3; (4) coarse crystalline, planar-s (subhedral) to nonplanar-a (anhedral) dolomites, RD4; (5) planar (subhedral) void-filling dolomite cements, CD1; and (6) nonplanar (saddle) void-filling dolomite, CD2. The RD1, RD2, RD3, and RD4 dolomite textures are replacive in origin and are volumetrically the most important types, whereas CD1 and CD2 dolomites with sparry calcite are commonly cements that fill the open spaces. Although the dolomites of the Bekhme Formation are not macroscopically observed in the field, their different types are easily distinguished by petrographic examination and scanning electron microscopy. It was observed that the dolomites of the Bekhme Formation are formed in two different diagenetic stages: the early diagenetic from mixing zone fluids at the tidal–subtidal (reef) environments and the late diagenetic from basinal brines which partially mixed with hydrothermal fluids at the shallow-deep burial depths. The latter occurs often with sphalerite, galena, and pyrite within mineralized zone. These dolomite types are associated base-metal mineralization (Mississippi Valley type).  相似文献   
173.
Biomarkers of exposure and effect of pollutants were analyzed in croakers Micropogonias furnieri (Teleostei: Sciaenidae) captured in winter and summer in a polluted and in a non-polluted site at the Patos Lagoon estuary (Southern Brazil). Catalase and glutathione S-transferase activities (exposure biomarkers) and lipid peroxidation (effect biomarker) were analyzed in liver samples. Other two effect biomarkers were also studied: blood cells DNA damage (through comet assay and micronucleus test) and respiratory burst measurements. In a broad view, results point to an important seasonal variation of the biochemical biomarkers analyzed. However, data obtained clearly indicate that croakers collected in winter at the polluted site were subjected to a level of clastogenic agents sufficient to generate irreversible genetic damages (mutations) and impair the fish immune system.  相似文献   
174.
The deep wells drilled along the eastern escarpment of the Jordan Valley penetrate confined aquifers that produce thermal and mineralized artesian water. Uncontrolled flows from poorly constructed and uncapped artesian wells over the last 30 years have caused the deterioration of the quality of shallow groundwater and surface water. They also have been accelerating the discharge of saline water from deep aquifers and have caused the loss of shallow fresh groundwater resources through the downward percolation of fresh water to replace the extracted deep salty groundwater. A lack of adequate controls on the construction and maintenance of artesian wells is leading to widespread water quality problems in the region, which limits the ability of future generations to access high-quality water, a clear breach of the principle of intergenerational equity.  相似文献   
175.
This study presents an extension of the concept of “quasi-saturation” to a quasi-saturated layer, defined as the uppermost dynamic portion of the saturated zone subject to water table fluctuations. Entrapped air here may cause substantial reductions in the hydraulic conductivity (K) and fillable pore water. Air entrapment is caused by a rising water table, usually as a result of groundwater recharge. The most significant effects of entrapped air are recharge overestimation based on methods that use specific yield (Sy), such as the water table fluctuation method (WTF), and reductions in K values. These effects impact estimation of fluid flow velocities and contaminant migration rates in groundwater. In order to quantify actual groundwater recharge rates and the effects of entrapped air, numerical simulations with the FEFLOW (Version 7.0) groundwater flow model were carried out using a quasi-saturated layer for a pilot area in Rio Claro, Brazil. The calculated recharge rate represented 16% of the average precipitation over an 8-year period, approximately half of estimates using the WTF method. Air entrapment amounted to a fillable porosity of 0.07, significant lower that the value of 0.17 obtained experimentally for Sy. Numerical results showed that the entrapped air volume in the quasi-saturated layer can be very significant (0.58 of the air fraction) and hence can significantly affect estimates of groundwater recharge and groundwater flow rates near the water table.  相似文献   
176.
Although considerable effort has been deployed to understand the impact of climate variability and vegetation change on runoff in major basins across Africa, such studies are scarce in the Gulf of Guinea Basin (GGB). This study combines the Budyko framework and elasticity concept along with geospatial data to fill this research gap in 44 nested sub-basins in the GGB. Annual rainfall from 1982 to 2021 show significant decreasing and increasing trends in the northern and southern parts of the GGB, respectively. Annual potential evapotranspiration (PET) also shows significant increasing trends with higher magnitudes observed in the northern parts of the GGB. Changing trends in climate variables corroborates with shift to arid and wetter conditions in the north and south, respectively. From 2000 to 2020 vegetation cover estimated using enhanced vegetation index (EVI) shows significant increasing trends in all sub-basins including those experiencing a decline in annual rainfall. Vegetation composition measured using vegetation continuous fields (VCFs) from 2000 to 2020 show an increase in tree canopy cover (TC), a decline in short vegetation cover and marginal changes in bare ground cover (BG). Elasticity coefficients show that a 10% increase in annual rainfall and PET may lead to a 33% increase and 24% decline in runoff, respectively. On the other hand, a 10% increase in EVI may lead to a 4% decline in runoff while a 10% increase in TC, SV and BG may reduce runoff by 4% and increase runoff by 3% and 2%, respectively. Even though changes are marginal, decomposing vegetation into different parameters using EVI and VCFs may lead to different hydrological effects on runoff which is one of the novelties of this study that may be used for implementing nature-based solutions. The study also demonstrates that freely available geospatial data together with analytical methods are a promising approach for understanding the impact of climate variability and vegetation change on hydrology in data-scarce regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号