首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   29篇
测绘学   10篇
大气科学   9篇
地球物理   83篇
地质学   43篇
海洋学   8篇
天文学   3篇
综合类   2篇
自然地理   4篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   6篇
  2018年   15篇
  2017年   15篇
  2016年   14篇
  2015年   9篇
  2014年   10篇
  2013年   13篇
  2012年   13篇
  2011年   5篇
  2010年   6篇
  2009年   7篇
  2008年   4篇
  2007年   8篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有162条查询结果,搜索用时 390 毫秒
11.
The cyclic tilt of a retaining wall induces a peculiar motion in the backfill (sand), which exhibits closed trajectories (eddies). In this paper, the motion of the backfill has been optically traced and analyzed by means of particle image velocimetry, also known as digital image correlation. The results are of importance for cyclically loaded structures (e.g, piles for off-shore structures) and can also serve to test numerical simulations of large deformation.  相似文献   
12.
Schistous rock can be considered—in a first approximation—as cross‐anisotropic linear elastic material. The determination of the corresponding material constants on the basis of the laboratory investigation of rock samples often fails, as the extraction of appropriate cores proves to be unfeasible (the cores disintegrate if the schistosity is pronounced). In this paper a new method is presented to determine the material constants of a linear elastic cross‐anisotropic rock on the basis of cavity expansion field tests, e.g. with a radial jack. To this purpose, an analytic approximation for the deformation of a hydrostatically loaded cylindrical cavity in cross‐anisotropic rock is derived which serves to the inverse analysis of the material parameters. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
13.
Data from the Öresund experiment are used to investigate the structure of the stably stratified internal boundary layer (SIBL) which develops when warm air is advected from a heated land surface over a cooler sea. The present study is based on a theory developed by Stull (1983a, b, c). He proposed that the turbulence and the mean structure of the nocturnal boundary layer is controlled by the time-integrated value of surface heat flux and that the instantaneous heat flux is of less importance.Dimensional arguments are used to define simple, physically consistent, temperature, velocity and length scales. The dimensionless surface heat flux has a high value immediately downwind of the shoreline and it decreases rapidly in magnitude with increasing distance from the coast. Farther away, it is essentially constant. The dimensionless potential temperature change exhibits an exponential profile. It is estimated that turbulence accounts for 71% of boundary-layer cooling while clear-air radiational cooling is responsible for the remaining 29%.Finally it is found that theoretical predictions for the height of the SIBL are in a good agreement with observations.  相似文献   
14.
Sodar measurements are used to study the layer-averaged winds in the unstable Planetary Boundary Layer (PBL). The field data are from the öresund experiment which was carried out over öresund, the strait between Denmark and Sweden during the period May 15 to June 14 1984. A simple resistance law proposed by Garratt et al. (1982) is used to derive friction velocity from sodar measurements of the mean wind. This was found to be in very good agreement with observations.The author is currently doing his military service in the Greek army.  相似文献   
15.
Compatibility, i.e., continuous displacement field, is often taken for granted but experience teaches that rock deformation is in most cases discontinuous. The relation between incompatible deformation and continuous distribution of dislocations is established since long and is recalled in this paper. Contrary to several applications of Cosserat theory to already laminated (jointed) rock, the main goal of this paper is to give an explanation for the formation of discontinuities (joints) in rock as a result of a particular type of buckling which leads the body outside of the Euclidean space of its original configuration.  相似文献   
16.
17.
We apply a novel adaptive mesh refinement (AMR) code, AMRVAC (Adaptive Mesh Refinement version of the Versatile Advection Code), to numerically investigate the various evolutionary phases in the interaction of a relativistic shell with its surrounding cold interstellar medium (ISM). We do this for both 1D isotropic and full 2D jet-like fireball models. This is relevant for gamma-ray bursts (GRBs), and we demonstrate that, thanks to the AMR strategy, we resolve the internal structure of the shocked shell–ISM matter, which will leave its imprint on the GRB afterglow. We determine the deceleration from an initial Lorentz factor  γ= 100  up to the almost Newtonian     phase of the flow. We present axisymmetric 2D shell evolutions, with the 2D extent characterized by their initial opening angle. In such jet-like GRB models, we discuss the differences with the 1D isotropic GRB equivalents. These are mainly due to thermally induced sideways expansions of both the shocked shell and shocked ISM regions. We found that the propagating 2D ultrarelativistic shell does not accrete all the surrounding medium located within its initial opening angle. Part of this ISM matter gets pushed away laterally and forms a wide bow-shock configuration with swirling flow patterns trailing the thin shell. The resulting shell deceleration is quite different from that found in isotropic GRB models. As long as the lateral shell expansion is merely due to ballistic spreading of the shell, isotropic and 2D models agree perfectly. As thermally induced expansions eventually lead to significantly higher lateral speeds, the 2D shell interacts with comparably more ISM matter and decelerates earlier than its isotropic counterpart.  相似文献   
18.
The gravitational potential of a constant density general polyhedron can be expressed both in terms of a closed analytical expression and as a series expansion involving the corresponding spherical harmonic coefficients. The latter can be obtained from two independent algorithms, which differ not only in their algorithmic architecture but in their efficiency and overall performance, especially when computing the coefficients of higher degree and order. In the present paper a comparative study of all these three approaches is carried out focusing on the numerical implementation of the recursive relations appearing in the two algorithms for the computation of the polyhedral potential harmonic coefficients. The performed numerical investigations show that the linear algorithm proposed by Jamet and Thomas (Proceedings of the second international GOCE user workshop, ‘GOCE, The Geoid and Oceanography’, ESA-ESRIN, Frascati, Italy, 8–10 March 2004, ESA SP-569, 2004), but so far not implemented, achieves a reasonable accuracy at a computational expense that opens to practical applications, for instance in the field of satellite gravimetry/gradiometry interpretation. The convergence behavior of the linear recursion algorithm is studied thoroughly and a computational procedure is proposed that enables the stable computation of potential harmonic coefficients up to degree 60 when referring to an arbitrarily shaped polyhedral body.  相似文献   
19.
This paper presents results from numerical simulations of the propagation of an active dip–slip fault rupture through a uniform soil layer covering the rigid bedrock. Following verification of the numerical methodology against field evidence, a parametric study is performed for loose and dense sand, for normally consolidated and overconsolidated clay, as well as for different fault dip angles (normal and reverse faults) and for different thicknesses of the soil cover. The soil is modeled as an elasto-plastic, strain-softening material that obeys the Mohr–Coulomb failure criterion. The study aims at establishing criteria for the approximate depiction of the location and the width of the zone with significant ground surface distortion, where the differential ground displacements induced by the fault rupture may threaten the integrity of man-mad structures.  相似文献   
20.
This paper presents a 2D model of the geological structure of Thessaloniki city and results of empirical and theoretical approaches for the evaluation of site response due to complex site effects. The construction of the 2D model is based on the available geophysical and geotechnical data in terms of the most important parameters needed to model site response. The well-known subsoil structure, despite the existence of some local uncertainties, gave the possibility to correlate the geometry and the dynamic properties of the 2D model with the results of site response determined from the analysis of one event in frequency and time domains and 1D numerical modelling. The study of site response shows the effect of the lateral variations on ground motion and suggests that the contribution of locally generated surface waves to the resonant peak may be important. In this case history, the limitations of the 1D approximation to simulate ground motion under complex soil conditions in both frequency and time domains are also shown. This paper lays the ground for a companion article dealing with 2D site effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号