首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   21篇
  国内免费   1篇
测绘学   14篇
大气科学   10篇
地球物理   92篇
地质学   78篇
海洋学   22篇
天文学   31篇
自然地理   9篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   14篇
  2019年   9篇
  2018年   18篇
  2017年   10篇
  2016年   15篇
  2015年   9篇
  2014年   16篇
  2013年   15篇
  2012年   6篇
  2011年   16篇
  2010年   20篇
  2009年   21篇
  2008年   13篇
  2007年   16篇
  2006年   8篇
  2005年   11篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有256条查询结果,搜索用时 14 毫秒
251.
A wide number of experimental studies conducted in latest years pointed out the high influence of the mechanical properties of masonry units and mortar bed joints on lateral strength and stiffness of masonry panels. This feature significantly modifies the global response of infilled frames under seismic actions as well as the local interaction phenomena. Despite a wide investigation on the influence of the infills on global behaviour of reinforced concrete (RC) frames has already been provided, different features characterizing the seismic performances of buildings suggest the need of accurately evaluating local interaction phenomena as well as the influence of the panel on specific and relevant aspects, as the accelerations transferred to non-structural components. This study provides a parametrical analysis of the influence of shear strength and elastic modulus of masonry infills on the seismic behaviour of RC frames originally designed for gravity loads. Regular buildings with different height were analysed using the Incremental Dynamic Analysis in order to provide fragility curves, investigate on the collapse mechanisms and define the floor spectra depending on the properties of the infills. Results obtained pointed out the high influence of the considered parameters on the fragility of existing RC frames, often characterized by inadequate transversal reinforcement of columns, which may lead to brittle failure due to the interaction with the infills. Floor response spectra are also significantly affected by the influence of masonry infills both in terms of shape and maximum spectral accelerations. Lastly, on the basis of the observed failure mechanisms, a parameter defining the ductility of the frames depending on the properties of the infills was also provided (Capacity Design Factor). The correlation between the mechanical properties of the infills and this parameter suggests its reliability in the simplified vulnerability analysis of existing buildings as well as for the design of new buildings.  相似文献   
252.
The in-plane capacity of unreinforced masonry (URM) elements may vary considerably depending on several factors, including boundary conditions, aspect ratio, vertical overburden, and masonry texture. Since the overall system resistance mainly relies on the in-plane lateral capacity of URM components when out-of-plane modes are adequately prevented, the structural assessment of URM structures could benefit from advanced numerical approaches able to account for these factors simultaneously. This paper aims at enhancing and optimising the employment of the distinct element method, currently confined to the analysis of local mechanisms of reduced-scale dry-joint blocky assemblies, with a view to simulate the experimentally observed responses of a series of URM full-scale specimens with mortared joints subjected to quasi-static in-plane cyclic loading. To this end, a mesoscale modelling approach is proposed that employs a simplified microscale modelling approach to effectively capture macroscale behaviour. Dynamic relaxation schemes are employed, in combination with time, size, and mass-scaling procedures, to decrease computational demand. A new methodology for numerically describing both unit, mortar and hybrid failure modes, also including masonry crushing due to high-compression stresses, is proposed. Empirical and homogenisation formulae for inferring the elastic properties of interface between elements are also verified, enabling the proposed approach to be applied more broadly. Using this modelling strategy, the interaction between stiffness degradation and energy dissipation rate was accounted for numerically. Although the models marginally underestimate the energy dissipation in the case of slender piers, a good agreement was obtained in terms of lateral strength, hysteretic response, and crack pattern.  相似文献   
253.
The present study highlights the dynamics of a body moving about a fixed point and provides analytical closed form solutions. Firstly, for the symmetrical heavy body, that is the Lagrange–Poisson case, we compute the second (precession, \(\psi \)) and third (spin, \(\varphi \)) Euler angles in explicit and real form by means of multiple hypergeometric (Lauricella) functions. Secondly, releasing the weight assumption but adding the complication of the asymmetry, by means of elliptic integrals of third kind, we provide the precession angle \(\psi \) completing the treatment of the Euler–Poinsot case. Thirdly, by integrating the relevant differential equation, we reach the finite polar equation of a special motion trajectory named the herpolhode. Finally, we keep the symmetry of the first problem, but without weight, and take into account a viscous dissipation. The use of motion first integrals—adopted for the first two problems—is no longer practicable in this situation; therefore, the Euler equations, faced directly, are driving to particular occurrences of Bessel functions of order \(-\,1/2\).  相似文献   
254.
Clinoforms with a range of scales are essential elements of prograding continental margins. Different types of clinoforms develop during margin growth, depending on combined changes in relative sea level, sediment supply and oceanographic processes. In studies of continental margin stratigraphy, trajectories of clinoform ‘rollover’ points are often used as proxies for relative sea-level variation and as predictors of the character of deposits beyond the shelf-break. The analysis of clinoform dynamics and rollover trajectory often suffers from the low resolution of geophysical data, the small scale of outcrops with respect to the dimensions of clinoform packages and low chronostratigraphic resolution. Here, through high-resolution seismic reflection data and sediment cores, we show how compound clinoforms were the most common architectural style of margin progradation of the late Pleistocene lowstand in the Adriatic Sea. During compound clinoform development, the shoreline was located landward of the shelf-break. It comprised a wave-dominated delta to the west and a barrier and back-barrier depositional system in the central and eastern area. Storm-enhanced hyperpycnal flows were responsible for the deposition of a sandy lobe in the river mouth, whereas a heterolithic succession formed elsewhere on the shelf. The storm-enhanced hyperpycnal flows built an apron of sand on the slope that interrupted an otherwise homogeneous progradational mudbelt. Locally, the late lowstand compound clinoforms have a flat to falling shelf-break trajectory. However, the main phase of shelf-break bypass and basin deposition coincides with a younger steeply rising shelf-break trajectory. We interpret divergence from standard models, linking shelf-break trajectory to deep-sea sand deposition, as resulting from a great efficiency of oceanographic processes in reworking sediment in the shelf, and from a high sediment supply. The slope foresets had a large progradational attitude during the late lowstand sea-level rise, showing that oceanographic processes can inhibit coastal systems to reach the shelf-edge. In general, our study suggests that where the shoreline does not coincide with the shelf-break, trajectory analysis can lead to inaccurate reconstruction of the depositional history of a margin.  相似文献   
255.
An ecotoxicological protocol with caged mussels, Mytilus galloprovincialis, was developed to evaluate the potential impact of an offshore gas platform in the central Adriatic Sea. Reference organisms were collected on a seasonal basis from an unpolluted site and transplanted for four weeks in both the sampling area and to the investigated platform. Chemical analyses of trace metals in mussel tissues were integrated with a multi-biomarker approach for the early detection of biological responses at several cellular targets. Induction of metallothioneins, peroxisomal proliferation and activity of acetylcholinesterase were measured as markers for specific classes of chemicals. Special attention was given to oxyradical metabolism and appearance of oxidative-mediated toxicity to reveal a more general onset of cellular disturbance. In addition to individual antioxidants (superoxide dismutase, catalase, glutathione S-transferases, glutathione reductase, Se-dependent and Se-independent glutathione peroxidases, and levels of total glutathione), the total oxyradical scavenging capacity (TOSC) allowed a quantification of the overall capability to neutralize specific forms of intracellular reactive oxygen species (ROS; i.e. peroxyl and hydroxyl radicals). Cellular damages were evaluated as lysosomal destabilization (membrane stability, accumulation of lipofuscin and neutral lipids), lipid peroxidation products (malondialdehyde) and DNA integrity (strand breaks and micronuclei); the air survival test was finally applied to evaluate the overall physiological condition of mussels. Concentration of trace metals (As, Ba, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Zn) revealed only limited variations in transplanted mussels during various experimental periods and such changes appeared partly related to natural fluctuations. Among biological responses, variations of antioxidants and lysosomal stability were confirmed as sensitive early warning signals for biological disturbance of both natural and anthropogenic origin. The presented protocol with caged mussels allowed marked biological effects caused by the investigated platform to be excluded, and represented a useful approach that is easy to extend for monitoring the impact of offshore activities in the Adriatic sea.  相似文献   
256.
Meteorological and oceanographic conditions in the Northern Adriatic Sea in a year notable for massive mucilage formation (2004) were compared with those in years where this phenomenon did not occur (2003, 2005 and 2006) to suggest possible links. The months preceding the mucilage event in 2004 were considered the ‘incubation period’ and were characterized by a strong freshet in May which increased the water column stability. Winter cooling and scarcity of freshwater inputs from the Po River triggered the dense water formation and intrusion in the northern basin. Weak southeasterly winds and an increase in surface seawater temperatures contributed to maintain and reinforce the water column stability, and at the same time an intense diatom spring bloom created the conditions for accumulation of organic matter. The interplay of climatological forcings and biological processes caused temporal variations of dissolved organic carbon (DOC) and particulate organic carbon (POC) in the basin, with POC playing an important role in the aggregation process, as suggested by its increase relative to DOC before massive mucilage formation. We therefore suggest that high POC/total particulate nitrogen ratios in the suspended particulate organic fraction, a steep increase of POC/Chlorphyll a, and the decreased DOC/POC ratios represent ‘early warning’ signals of the main processes that lead to mucilage events in the Northern Adriatic Sea.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号