首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   0篇
地球物理   14篇
地质学   3篇
自然地理   77篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   5篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1991年   14篇
  1990年   1篇
  1987年   5篇
  1986年   2篇
  1985年   7篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1978年   1篇
  1977年   7篇
  1975年   3篇
  1974年   1篇
  1971年   1篇
  1970年   4篇
  1967年   1篇
  1965年   2篇
  1964年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
81.
Summary. The polarizations of shear waves recorded by networks of digital three-component seismometers immediately above small earthquakes near the North Anatolian Fault in Turkey display shear-wave splitting on almost all shear-wave seismograms recorded within the shear-wave window. This splitting is incompatible with source radiation-patterns propagating through simple isotropic structures but is compatible with effective anisotropy of the internal structure of the rock along the ray paths. This paper interprets the phenomena in terms of widespread crack-induced anisotropy. Distributions of stress-induced cracks model many features of the observations, and synthetic polarization diagrams calculated for propagation through simulated cracked rock are similar to the observed patterns. This evidence for widespread crack-induced anisotropy lends strong support to the hypothesis of extensive-dilatancy anisotropy (EDA) suggested by laboratory experiments in subcritical crack-growth. The crucial evidence confirming some form of EDA would be observations of temporal changes in shear-wave splitting as the stress field alters the crack density and crack geometry. There is some weak evidence for such temporal changes at one site, but further analysis of suitable digital three-component seismometer networks in seismic areas is required to confirm EDA.  相似文献   
82.
Summary. The third occupation (experiment TDP3) of recording sites above a persistent swarm of microearthquakes near the North Anatolian Fault, with a larger seismic network and over a longer period of time, confirms and refines previous observations with greater resolution. The greater resolution in earthquake locations has revealed marked clustering in time and space. Many, perhaps most, of the earthquakes belong to clusters, where successive earthquakes originate in a very small volume and have similar fault mechanisms. Such studies allow the progression of seismic activity of small earthquakes to be followed in some detail, and may reveal features which are hidden in larger and more complex earthquake sequences.  相似文献   
83.
b
Current earthquake prediction experiments investigate behaviour before potentially large earthquakes. There is some evidence that comparatively small typical events in isolated swarms of earthquakes may have precursory behaviour similar to that before much larger earthquakes in more complicated areas of seismicity. Such typical events in isolated swarms frequently recur with similar magnitudes in similar locations with repetition times sometimes as little as a few days. It is argued that monitoring such typical events in isolated swarms could be an effective way to gain experience of precursory activity, and might well be a good guide for investigations of precursors to large earthquakes.  相似文献   
84.
85.
53 local earthquakes recorded at 2.5 km depth in the Cajon Pass scientific borehole are analysed for shear-wave splitting. The time delays between the split shear waves can be positively identified for 32 of the events. Modelling these observations of polarizations and time delays using genetic algorithms suggests that the anisotropic structure near Cajon Pass has orthorhombic symmetry. The polarization of the shear waves and the inferred strike of the stress-aligned fluid-filled intergranular microcracks and pores suggests that the maximum horizontal compressional stress direction is approximately N13°W. This is consistent with previous results from earthquake source mechanisms and the right-lateral strike-slip motion on the nearby San Andreas Fault, but not with stresses measured within the uppermost 3 km of the borehole. This study suggests that the San Andreas Fault is driven by deeper tectonic stresses and the present understanding of a weak and frictionless San Andreas Fault may need to be modified. The active secondary faulting and folding close to the fault are probably driven by the relatively shallow stress as measured in the 3.5 km deep borehole.  相似文献   
86.
87.
88.
The Shear-Wave Experiment at Atomic Energy of Canada Limited's Underground Research Laboratory was probably the first controlled-source shear-wave survey in a mine environment. Taking place in conjunction with the excavation of the Mine-by test tunnel at 420 m depth, the shear-wave experiment was designed to measure the in situ anisotropy of the rockmass and to use shear waves to observe excavation effects using the greatest variety of raypath directions of any in situ shear-wave survey to date. Inversion of the shear-wave polarizations shows that the anisotropy of the in situ rockmass is consistent with hexagonal symmetry with an approximate fabric orientation of strike 023° and dip 35°. The in situ anisotropy is probably due to microcracks with orientations governed by the in situ stress field and to mineral alignment within the weak gneissic layering. However, there is no unique interpretation as to the cause of the in situ anisotropy as the fabric orientation agrees approximately with both the orientation expected from extensive-dilatancy anisotropy and that of the gneissic layering. Eight raypaths with shear waves propagating wholly or almost wholly through granodiorite, rather than granite, do not show the expected shear-wave splitting and indicate a lower in situ anisotropy, which may be due to the finer grain size and/or the absence of gneissic layering within the granodiorite. These results suggest that shear waves may be used to determine crack and mineral orientations and for remote monitoring of a rockmass. This has potential applications in mining and waste monitoring.  相似文献   
89.
90.
Seismic body waves in anisotropic media: propagation through a layer   总被引:3,自引:0,他引:3  
Summary. The square-root energy ratios and pulse shapes are presented for P, SV and SH waves transmitted through a layer of orthorhombic olivine between two isotropic half-spaces. Off incident planes of symmetry, incident P waves generate two small amplitude SH waves (one from each interface), whose amplitudes decrease slowly with increasing period. Incident SV (or SH ) waves can generate large amplitude SH (or SV ) waves which decrease rapidly with increasing period. For incident S waves, many pulses not present in isotropic models are generated, often of large relative amplitude, with many of the transmitted S pulses showing evidence of double arrivals, either in the form of S-wave splitting, or a modification of the shape of the input waveform.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号