首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
地球物理   29篇
地质学   9篇
海洋学   1篇
自然地理   2篇
  2021年   1篇
  2020年   2篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2007年   5篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
21.
Physical environment, man‐made pollution, nutrition and their mutual interactions can be major causes of human diseases. These disease determinants have distinct spatial distributions across geographical units, so that their adequate study involves the investigation of the associated geographical strata. We propose four geographical detectors based on spatial variation analysis of the geographical strata to assess the environmental risks of health: the risk detector indicates where the risk areas are; the factor detector identifies factors that are responsible for the risk; the ecological detector discloses relative importance between the factors; and the interaction detector reveals whether the risk factors interact or lead to disease independently. In a real‐world study, the primary physical environment (watershed, lithozone and soil) was found to strongly control the neural tube defects (NTD) occurrences in the Heshun region (China). Basic nutrition (food) was found to be more important than man‐made pollution (chemical fertilizer) in the control of the spatial NTD pattern. Ancient materials released from geological faults and subsequently spread along slopes dramatically increase the NTD risk. These findings constitute valuable input to disease intervention strategies in the region of interest.  相似文献   
22.
A Bayesian/maximum-entropy view to the spatial estimation problem   总被引:12,自引:0,他引:12  
The purpose of this paper is to stress the importance of a Bayesian/maximum-entropy view toward the spatial estimation problem. According to this view, the estimation equations emerge through a process that balances two requirements: High prior information about the spatial variability and high posterior probability about the estimated map. The first requirement uses a variety of sources of prior information and involves the maximization of an entropy function. The second requirement leads to the maximization of a so-called Bayes function. Certain fundamental results and attractive features of the proposed approach in the context of the random field theory are discussed, and a systematic spatial estimation scheme is presented. The latter satisfies a variety of useful properties beyond those implied by the traditional stochastic estimation methods.  相似文献   
23.
The well-known “Maximum Entropy Formalism” offers a powerful framework for deriving probability density functions given a relevant knowledge base and an adequate prior. The majority of results based on this approach have been derived assuming a flat uninformative prior, but this assumption is to a large extent arbitrary (any one-to-one transformation of the random variable will change the flat uninformative prior into some non-constant function). In a companion paper we introduced the notion of a natural reference point for dimensional physical variables, and used this notion to derive a class of physical priors that are form-invariant to changes in the system of dimensional units. The present paper studies effects of these priors on the probability density functions derived using the maximum entropy formalism. Analysis of real data shows that when the maximum entropy formalism uses the physical prior it yields significantly better results than when it is based on the commonly used flat uninformative prior. This improvement reflects the significance of the incorporating additional information (contained in physical priors), which is ignored when flat priors are used in the standard form of the maximum entropy formalism. A potentially serious limitation of the maximum entropy formalism is the assumption that sample moments are available. This is not the case in many macroscopic real-world problems, where the knowledge base available is a finite sample rather than population moments. As a result, the maximum entropy formalism generates a family of “nested models” parameterized by the unknown values of the population parameters. In this work we combine this formalism with a model selection scheme based on Akaike’s information criterion to derive the maximum entropy model that is most consistent with the available sample. This combination establishes a general inference framework of wide applicability in scientific/engineering problems.  相似文献   
24.
A theoretical model for the spread of infectious diseases in a composite space–time domain is developed. The model has a general form that enables it to account for the basic mechanisms of disease distribution and to incorporate the considerable multisourced uncertainty (caused by physiographic features, disease variability, meteorological conditions, etc.). Starting from the general model formulation regarding the specification of transmission and recovery rates, as well as the population migration dynamics, several subsequent assumptions are introduced that simplify analytical tractability and practical implementation. In particular, linearization involving a deterministic functional representation for the average evolution of the fraction of susceptible individuals allows the formulation of an extended Kalman filter approach for estimation based on the time series observed at a finite set of locations. Different aspects of interest derived from the epidemic space–time model proposed, as well as the performance of the extended Kalman filter procedure, are illustrated through simulations.  相似文献   
25.
26.
27.
Determination of uninformative prior distributions is essential in many branches of knowledge integration and system processing. The conceptual difficulties of this determination are due to lack of uniqueness and consequential lack of objectivity associated with the state of complete ignorance. The present work overcomes the above difficulty by considering a class of priors that are consistent with a physical invariance principle, namely, invariance with respect to a change in the system of dimensional units. These priors do not represent total ignorance and they do not suffer from the aforementioned conceptual difficulties. This Dimensional Invariance Requirement (DIR) leads to a class of prior densities, which constitute a generalization of Jeffrey’s proposal concerning priors of inherently positive variables. This generalization possesses certain important features, from a formal as well as an interpretive viewpoint, which involve the notion of a knowledge-based natural reference point of physical random variables (RV). Conceptual difficulties associated with uninformative priors are resolved, whereas well-established results are derived as special cases of the DIR. Application of this requirement to a system of RV yields the familiar result that at the prior knowledge stage these variables should be considered as independent. Prior distributions for non-dimensional physical quantities are obtained by defining these variables in terms of dimensional quantities. A logarithmic transformation carries the physical prior into a uniform (flat) density that is convenient in certain applications. In a companion paper we examine the improvements gained in the maximum entropy context by means of the proposed class of physical prior densities.  相似文献   
28.
Application of the BME approach to soil texture mapping   总被引:3,自引:1,他引:3  
In order to derive accurate space/time maps of soil properties, soil scientists need tools that combine the usually scarce hard data sets with the more easily accessible soft data sets. In the field of modern geostatistics, the Bayesian maximum entropy (BME) approach provides new and powerful means for incorporating various forms of physical knowledge (including hard and soft data, soil classification charts, land cover data from satellite pictures, and digital elevation models) into the space/time mapping process. BME produces the complete probability distribution at each estimation point, thus allowing the calculation of elaborate statistics (even when the distribution is not Gaussian). It also offers a more rigorous and systematic method than kriging for integrating uncertain information into space/time mapping. In this work, BME is used to estimate the three textural fractions involved in a texture map. The first case study focuses on the estimation of the clay fraction, whereas the second one considers the three textural fractions (sand, silt and clay) simultaneously. The BME maps obtained are informative (important soil characteristics are identified, natural variations are well reproduced, etc.). Furthermore, in both case studies, the estimates obtained by BME were more accurate than the simple kriging (SK) estimates, thus offering a better picture of soil reality. In the multivariate case, classification error rate analysis in terms of BME performs considerably better than in terms of kriging. Analysis in terms of BME can offer valuable information to be used in sampling design, in optimizing the hard to soft data ratio, etc.  相似文献   
29.
During the past decade, the Bayesian maximum entropy (BME) approach has been used with considerable success in a variety of geostatistical applications, including the spatiotemporal analysis and estimation of multivariate distributions. In this work, we investigate methods for calculating the space/time moments of such distributions that occur in BME mapping applications, and we propose general expressions for non-Gaussian model densities based on Gaussian averages. Two explicit approximations for the covariance are derived, one based on leading-order perturbation analysis and the other on the diagrammatic method. The leading-order estimator is accurate only for weakly non-Gaussian densities. The diagrammatic estimator includes higher-order terms and is accurate for larger non-Gaussian deviations. We also formulate general expressions for Monte Carlo moment calculations including precision estimates. A numerical algorithm based on importance sampling is developed, which is computationally efficient for multivariate probability densities with a large number of points in space/time. We also investigate the BME moment problem, which consists in determining the general knowledge-based BME density from experimental measurements. In the case of multivariate densities, this problem requires solving a system of nonlinear integral equations. We refomulate the system of equations as an optimization problem, which we then solve numerically for a symmetric univariate pdf. Finally, we discuss theoretical and numerical issues related to multivariate BME solutions.  相似文献   
30.
A regression model is used to study spatiotemporal distributions of solute content ion concentration data (calcium, chloride and nitrate), which provide important water contamination indicators. The model consists of three random and one deterministic components. The random space/time component is assumed to be homogeneous/stationary and to have a separable covariance. The purely spatial and the purely temporal random components are assumed to have homogenous and stationary increments, respectively. The deterministic component represents the space/time mean function. Inferences of the random components involve maximum likelihood and semi-parametric methods under some restrictions on the data configuration. Computational advantages and modelling limitations of the assumptions underlying the regression model are discussed. The regression model leads to simplifications in the space/time kriging and cokriging systems used to obtain space/time estimates at unobservable locations/instants. The application of the regression model in the study of the solute content ions was done at a global scale that covers the entire region of interest. The variability analysis focuses on the calculation of the spatial direct and cross-variograms and the evaluation of correlations between the three solute content ions. The space/time kriging system is developed in terms of the space direct and cross-variograms, and allows the separate estimation of the regression model components. Maps of these components are then obtained for each one of the three ions. Using the estimates of the purely spatial component, spatial dependencies between the ions are studied. Physical causes and consequences of the space/time variability are discussed, and comparisons are made with previous analyses of the solute content dataset.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号