首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7210篇
  免费   389篇
  国内免费   32篇
测绘学   188篇
大气科学   725篇
地球物理   1860篇
地质学   2906篇
海洋学   398篇
天文学   1170篇
综合类   35篇
自然地理   349篇
  2023年   33篇
  2022年   47篇
  2021年   121篇
  2020年   144篇
  2019年   114篇
  2018年   322篇
  2017年   328篇
  2016年   432篇
  2015年   307篇
  2014年   375篇
  2013年   548篇
  2012年   431篇
  2011年   400篇
  2010年   382篇
  2009年   405篇
  2008年   292篇
  2007年   233篇
  2006年   225篇
  2005年   201篇
  2004年   197篇
  2003年   170篇
  2002年   147篇
  2001年   122篇
  2000年   108篇
  1999年   84篇
  1998年   91篇
  1997年   112篇
  1996年   74篇
  1995年   76篇
  1994年   73篇
  1993年   55篇
  1992年   41篇
  1991年   48篇
  1990年   68篇
  1989年   40篇
  1988年   29篇
  1987年   53篇
  1986年   38篇
  1985年   47篇
  1984年   49篇
  1983年   39篇
  1982年   42篇
  1981年   49篇
  1980年   29篇
  1979年   33篇
  1978年   26篇
  1977年   29篇
  1975年   25篇
  1974年   24篇
  1973年   25篇
排序方式: 共有7631条查询结果,搜索用时 46 毫秒
991.
We report new nitrogen and argon isotope and abundance results for single breccia clasts and agglutinates from four different sections of the Luna 24 drill core in order to re-evaluate the provenance of N trapped in lunar regolith, and to place limits on the flux of planetary material to the Moon’s surface. Single Luna 24 grains with 40Ar/36Ar ratios <1 show δ15N values between ?54.5‰ and +123.3‰ relative to terrestrial atmosphere. Thus, low-antiquity lunar soils record both positive and negative δ15N signatures, and the secular increase of the δ15N value previously postulated by Kerridge (Kerridge, J.F. [1975]. Science 188(4184), 162–164. doi:10.1126/science.188.4184.162) is no longer apparent when the Luna and Apollo data are combined. Instead, the N isotope signatures, corrected for cosmogenic 15N, are consistent with binary mixing between isotopically light solar wind (SW) N and a planetary N component with a δ15N value of +100‰ to +160‰. The lower δ15N values of Luna 24 grains compared to Apollo samples reflect a higher relative proportion of solar N, resulting from the higher SW fluence in the region of Mare Crisium compared to the central near side of the Moon. Carbonaceous chondrite-like micro-impactors match well the required isotope characteristics of the non-solar N component trapped in low-antiquity lunar regolith. In contrast, a possible cometary contribution to the non-solar N flux is constrained to be ?3–13%. Based on the mixing ratio of SW to planetary N obtained for recently exposed lunar soils, we estimate the flux of micro-impactors to be (2.2–5.7) × 103 tons yr?1 at the surface of the Moon. Our estimate for Luna 24 agrees well with that for young Apollo regolith, indicating that the supply of planetary material does not depend on lunar location. Thus, the continuous influx of water-bearing cosmic dust may have represented an important source of water for the lunar surface over the past ~1 Ga, provided that water removal rates (i.e., by meteorite impacts, photodissociation, and sputtering) do not exceed accumulation rates.  相似文献   
992.
Abstract– Vargeão Dome (southern Brazil) is a circular feature formed in lava flows of the Lower Cretaceous Serra Geral Formation and in sandstones of the Paraná Basin. Even though its impact origin was already proposed in the 1980s, little information about its geological and impact features is available in the literature. The structure has a rim‐rim diameter of approximately 12 km and comprises several ring‐like concentric features with multiple concentric lineaments. The presence of a central uplift is suggested by the occurrence of deformed sandstone strata of the Botucatu and Pirambóia formations. We present the morphological/structural characteristics of Vargeão Dome, characterize the different rock types that occur in its interior, mainly brecciated volcanic rocks (BVR) of the Serra Geral Formation, and discuss the deformation and shock features in the volcanic rocks and in sandstones. These features comprise shatter cones in sandstone and basalt, as well as planar microstructures in quartz. A geochemical comparison of the target rock equivalents from outside the structure with the shocked rocks from its interior shows that both the BVRs and the brecciated sandstone have a composition largely similar to that of the corresponding unshocked lithologies. No traces of meteoritic material have been found so far. The results confirm the impact origin of Vargeão Dome, making it one of the largest among the rare impact craters in basaltic targets known on Earth.  相似文献   
993.
994.
Insects are the largest and most diverse group of living organisms on Earth, playing a critical but underestimated role as agents of geomorphic change. Burrowing insects create micro-scale landforms such as subterranean tunnels and surface mounds and, by this way, exert an influence on hydrology, soil erosion and sediment transfer at a wider landscape scale. However, social insects represented by ants and termites were the main taxa studied as geomorphic agents and ecosystem engineers. This article proposes an extended and critical literature review of insects as zoogeomorphic agents, with reference to various taxonomic orders and families of insects having a burrowing behaviour. It provides a large overview of their primary and secondary impacts on Earth surface systems, both supported by naturalistic evidence and available quantitative data. Some evolutionary insights are discussed based on fossil evidence of geomorphic work by insects and, at finer temporal scale, on recent advances in radiometric and luminescence dating of insect mounds. Finally, this article explores the fruitful links between geomorphology and entomology, and suggests several research perspectives in order to develop an integrated understanding of the importance of insects in Earth surface processes and landforms. © 2020 John Wiley & Sons, Ltd.  相似文献   
995.
Dynamics and functions of large wood have become integral considerations in the science and management of river systems. Study of large wood in rivers took place as monitoring of fish response to wooden structures placed in rivers in the central United States in the early 20th century, but did not begin in earnest until the 1970s. Research has increased in intensity and thematic scope ever since. A wide range of factors has prompted these research efforts, including basic understanding of stream systems, protection and restoration of aquatic ecosystems, and environmental hazards in mountain environments. Research and management have adopted perspectives from ecology, geomorphology, and engineering, using observational, experimental, and modelling approaches. Important advances have been made where practical information needs converge with institutional and science leadership capacities to undertake multi-pronged research programmes. Case studies include ecosystem research to inform regulations for forest management; storage and transport of large wood as a component in global carbon dynamics; and the role of wood transport in environmental hazards in mountain regions, including areas affected by severe landscape disturbances, such as volcanic eruptions. As the field of research has advanced, influences of large wood on river structures and processes have been merged with understanding of streamflow and sediment regimes, so river form and function are now viewed as involving the tripartite system of water, sediment, and wood. A growing community of researchers and river managers is extending understanding of large wood in rivers to climatic, forest, landform, and social contexts not previously investigated. © 2020 John Wiley & Sons, Ltd.  相似文献   
996.
The vertical position of the streambed–water boundary fluctuates during the course of sediment transport episodes, due to particle entrainment/deposition and bedform migration, amongst other hydraulic and bedload mechanisms. These vertical oscillations define a topmost stratum of the streambed (i.e. the ‘active layer or active depth’), which usually represents the main source of particles entrained during long and high-magnitude bedload transport episodes. The vertical extent of this layer is hence a capital parameter for the quantification of bedload volumes and a major driver of stream ecology in gravel-bed rivers. However, knowledge on how the active depth scales to flow strength and the nature of the different controls on the relation between the flow strength and the active depth is still scarce. In this paper we present a meta-analysis over active depth data coming from ~130 transport episodes extracted from a series of published field studies. We also incorporate our own field data for the rivers Ebro and Muga (unpublished), both in the Iberian Peninsula. We explore the database searching for the influence of flow strength, grain size, streambed mobility and channel morphology on the vertical extent of the active layer. A multivariate statistical analysis (stepwise multiple regression) confirms that the set of selected variables explains a significant amount of variance in the compiled variables. The analysis shows a positive scaling between active depth and flow strength. We have also identified some links between the active depth and particle travel distances. However, these relations are also largely modulated by other fluvial drivers, such as the grain size of the bed surface and the dominant channel macro-bedforms, with remarkable differences between plane-bed, step-pool and riffle-pool channels. © 2020 John Wiley & Sons, Ltd.  相似文献   
997.
Water bodies in Tanzania are experiencing increased siltation, which is threatening water quality, ecosystem health, and livelihood security in the region. This phenomenon is caused by increasing rates of upstream soil erosion and downstream sediment transport. However, a lack of knowledge on the contributions from different catchment zones, land-use types, and dominant erosion processes, to the transported sediment is undermining the mitigation of soil degradation at the source of the problem. In this context, complementary sediment source tracing techniques were applied in three Tanzanian river systems to further the understanding of the complex dynamics of soil erosion and sediment transport in the region. Analysis of the geochemical and biochemical fingerprints revealed a highly complex and variable soil system that could be grouped in distinct classes. These soil classes were unmixed against riverine sediment fingerprints using the Bayesian MixSIAR model, yielding proportionate source contributions for each catchment. This sediment source tracing indicated that hillslope erosion on the open rangelands and maize croplands in the mid-zone contributed over 75% of the transported sediment load in all three river systems during the sampling time-period. By integrating geochemical and biochemical fingerprints in sediment source tracing techniques, this study demonstrated links between land use, soil erosion and downstream sediment transport in Tanzania. This evidence can guide land managers in designing targeted interventions that safeguard both soil health and water quality.  相似文献   
998.
Soil resources in parts of Tanzania are rapidly being depleted by increased rates of soil erosion and downstream sediment transport, threatening ecosystem health, water and livelihood security in the region. However, incomplete understanding to what effect the dynamics of soil erosion and sediment transport are responding to land-use changes and climatic variability are hindering the actions needed to future-proof Tanzanian land-use practices. Complementary environmental diagnostic tools were applied to reconstruct the rates and sources of sedimentation over time in three Tanzanian river systems that have experienced changing land use and climatic conditions. Detailed historical analysis of sediment deposits revealed drastic changes in sediment yield and source contributions. Quantitative sedimentation reconstruction using radionuclide dating showed a 20-fold increase in sediment yield over the past 120 years. The observed dramatic increase in sediment yield is most likely driven by increasing land-use pressures. Deforestation, cropland expansion and increasing grazing pressures resulted into accelerating rates of sheet erosion. A regime shift after years of progressive soil degradation and convergence of surface flows resulted into a highly incised landscape, where high amounts of eroded soil from throughout the catchment are rapidly transported downstream by strongly connected ephemeral drainage networks. By integrating complementary spatial and temporal evidence bases, this study demonstrated links between land-use change, increased soil erosion and downstream sedimentation. Such evidence can guide stakeholders and policy makers in the design of targeted management interventions to safeguard future soil health and water quality.  相似文献   
999.
In this article we apply the CASCADE network-scale sediment connectivity model to the Vjosa River in Albania. The Vjosa is one of the last unimpaired braided rivers in Europe and, at the same time, a data scarce environment, which limits our ability to model how this pristine river might respond to future human disturbance. To initialize the model, we use remotely sensed data and modeled hydrology from a regional model. We perform a reach-by-reach optimization of surface grain size distribution (GSD) and bedload transport capacity to ensure equilibrium conditions throughout the network. In order to account for the various sources of uncertainty in the calculation of transport capacity, we performed a global sensitivity analysis. The modeled GSD distributions generated by the sensitivity analysis generally match the six GSDs measured at different locations within the network. The modeled bedload sediment fluxes increase systematically downstream, and annual fluxes at the outlet of the Vjosa are well within an order of magnitude of fluxes derived from previous estimates of the annual suspended sediment load. We then use the modeled sediment fluxes as input to a set of theoretically derived functions that successfully discriminate between multi-thread and single-thread channel patterns. This finding provides additional validation of the model results by showing a clear connection between modeled sediment concentrations and observed river morphology. Finally, we observe that a reduction in sediment flux of about 50% (e.g., due to dams) would likely cause existing braided reaches to shift toward single thread morphology. The proposed method is widely applicable and opens a new avenue for application of network-scale sediment models that aid in the exploration of river stability to changes in water and sediment fluxes.  相似文献   
1000.
The production of coarse sediment in mountain landscapes depends mainly on the type and activity of geomorphic processes and topographic and natural conditions (e.g. vegetation cover) of these catchments. The supply of sediment from these slopes to mountain streams and its subsequent transport lead to sediment connectivity, which describes the integrated coupled state of these systems. Studies from the Northern Calcareous Alps show that the size of the sediment contributing area (SCA), a subset of the drainage area that effectively delivers sediment to the channel network, can be used as a predictor of sediment delivery to mountain streams. The SCA concept is delineated on a digital elevation model (DEM) using a set of rules related to the steepness and length of slopes directly adjacent to the channel network, the gradient of the latter and the vegetation cover. The present study investigates the applicability of this concept to the Western Alps to identify geomorphologically active areas and to estimate mean annual sediment yield (SY) in mainly debris-flow-prone catchments. We use a statistical approach that shows a parameter optimisation and a linear regression of SY on SCA extent. We use a dataset of ~25 years of assessed coarse sediment accumulation in 35 sediment retention basins. In the investigated catchments, sediment transport is governed by several factors, mainly by the extent of vegetation-free areas with a minimum slope of 23° that is coupled to the channel network with a very low gradient of the latter. With our improved framework, we can show that the SCA approach can be applied to catchments that are widely distributed, in a large spatial scale (hectare area) and very heterogeneous in their properties. In general, the investigated catchments show high connectivity, resulting in significant correlations between long-term average yield and the size of the SCA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号