首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   3篇
大气科学   4篇
地球物理   8篇
地质学   13篇
海洋学   1篇
天文学   10篇
综合类   1篇
自然地理   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   5篇
  2002年   1篇
  1998年   3篇
  1997年   1篇
排序方式: 共有38条查询结果,搜索用时 859 毫秒
21.
22.
23.
A comprehensive sedimentological study was undertaken in the Miocene of the subalpine massifs and southern Jura (France) with the aim to constrain the evolution of process changes in third-order sequences of peripheral foreland basins during the overfilled phase (i.e. sediment supply higher than accommodation space). Fieldwork analyses based on 35 sedimentological sections allowed the identification of four depositional models: wave dominated, mixed wave-tide, river to tide and river dominated. The sections were dated using chemostratigraphy (i.e. marine strontium isotopic ratios), revealing three-third-order sequences between the Upper Aquitanian and the Langhian. Chronostratigraphical and sedimentological results document prominent and recurrent changes in depositional models along third-order sequences: (i) in the earliest stage of the transgression, mixed-energy coastal environments influenced by the local coastal morphology prevailed (in palaeo-highs or incised valleys); (ii) during the course of the transgression, Gilbert delta deposits suggest a prominent steepening linked to a tectonic uplift in the proximal depozone (between the tectonically active frontal part of the orogenic wedge and the proximal foredeep). Instead, in the distal depozone (between the proximal foredeep and the proximal border of the flexural uplifted forebulge), deposits were characterized either by wave-dominated or mixed wave-tide environments and are likely eustatically-driven; (iii) during the maximum flooding stage, water depth remained shallow below the storm-weather wave base; and (iv) during the regression, the proximal depozone is characterized by the progradation of gravel-rich fan deltas. In the distal depozone, mixed wave-tide systems preceded the development of river to tidal depositional environments. These results were integrated and compared with facies models from other basin analogues worldwide. A model tackling the evolution of process changes within third-order sequences (of the overfilled phase) of foreland basins is proposed, thereby improving sequence stratigraphic predictions in foreland basins.  相似文献   
24.
In order to understand and manage a hydrological region, one usually needs to comprehensively characterize the watersheds (basins) and their river networks. This usually and primarily involves analysis of hydrological and geomorphological properties of the watershed derived from the digital terrain model (DTM), but this approach neglects the information content of the associated river networks. In this study, we used a combination of traditional DTM and original river network‐related indices to the watersheds of an understudied region, Haiti. We also used Monte Carlo simulations to estimate index confidence levels of these indices. Compared to commonly used indices, the network indices provided valuable information that could then be used in statistical analyses as a way to identify the dominant features of the country's watershed morphology. On this basis, we identified four watershed groups in Haiti: (i) high, elongated watersheds, (ii) lowlands, with sinuous networks and relatively slow runoff, (iii) high watersheds with dendritic networks, and (iv) lowlands with high downstream–upstream contrast in properties and rapid runoffs. We argue that river network features provide complementary information in terms of flow topology, highly relevant to characterize contrasting relief countries, such as Haiti. Hence, more exhaustive characterization of watersheds would predictably benefit from the approach outlined in this paper. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
25.
Neotectonics of the Western and Central Alps is characterized by ongoing widespread extension in the highest zones of the chain and transcurrent/compressive tectonics at the external limits of the belt. The overall geodetically measured deformations also indicate extension across the Western Alps. There is a good qualitative coherency between seismotectonic and geodetic approaches. Here we attempt to quantify the seismic part of the deformation. The seismic strain is compared to the deformation derived from geodesy. In sub‐areas of homogeneous seismic stress/strain, we computed the total seismic moment tensor and related strain tensor. This study provides new quantitative elements about the ongoing geodynamic processes in the alpine belt. The important discrepancies obtained between seismic strains and geodetically‐measured deformations raise the issue of aseismic deformation in the Alps, which could be related to elastic loading, creeping and/or a slower ductile‐style deformation.  相似文献   
26.
We discuss how the combination of polarimetry and ion-to-neutral molecular line width ratio measurements permits the determination of the magnitude and orientation of the magnetic field in the weakly ionized parts of molecular clouds. Polarimetry measurements give the field orientation in the plane of the sky and the ion-to-neutral molecular line width ratio determines the angle between the magnetic field and the line of sight. We show the first results obtained with this technique on the M17 and Orion A star-forming region using Hertz 350 μm polarimetry maps and HCO+-to-HCN molecular line width ratios to provide the first view of the spatial orientation of the magnetic field these molecular clouds.  相似文献   
27.
The contrasted seismotectonic regime of the Western Alps is characterized by radial extension in the high chain, combined with local compressive areas at the foothill of the belt, and everywhere occurrence of transcurrent tectonics. Here, we compare this seismotectonic regime to a large-scale compilation of GPS measurements in the Western Alpine realm. Our analysis is based on the raw GPS database, which give the measured velocity field with respect to the so called “stable Europe”, and an interpolated velocity field, in order to smooth the database on a more regular mesh. Both strain rate and rotational components of the deformation are investigated. The strain rate field shows patch-like structure, with extensional areas located in the core and to the North of the belt and compressional areas located in its periphery. Although the GPS deformation fields (both raw and interpolated) are more spatially variable than the seismotectonic field, a good qualitative correlation is established with the seismotectonic regionalization of the deformation. The rotation rate fields (both raw and interpolated) present counterclockwise rotations in the innermost part of the belt and a surprising continuous zone of clockwise rotations following the arc-shape geometry of the Western Alps along their external border. We interpret this new result in term of a counterclockwise rotation of the Apulia plate with respect to the stable Europe. This tectonic scheme may induce clockwise rotations of crustal block along the large strike-slip fault system, which runs in the outer part of the belt, from the Rhône-Simplon fault to the Belledonne fault and Southeastward, to the High-Durance and Argentera fault.  相似文献   
28.
Various aspects of mass loss associated with Young Stellar Objects are reviewed. The classification of the driving sources of the outflows is presented, and the properties of the youngest sources, the Class 0 protostars, are given. The observed properties of the molecular, atomic, and neutral components of the bipolar flows are discussed and critically compared with the most recent theoretical models. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
29.
Based on analytic relations, we compute the reflection and transmission responses of a periodically layered medium with a stack of elastic shales and partially saturated sands. The sand layers are considered anelastic (using patchy saturation theory) or elastic (with effective velocity). Using the patchy saturation theory, we introduce a velocity dispersion due to mesoscale attenuation in the sand layer. This intrinsic anelasticity is creating frequency dependence, which is added to the one coming from the layering (macroscale). We choose several configurations of the periodically layered medium to enhance more or less the effect of anelasticity. The worst case to see the effect of intrinsic anelasticity is obtained with low dispersion in the sand layer, strong contrast between shales and sands, and a low value of the net‐to‐gross ratio (sand proportion divided by the sand + shale proportion), whereas the best case is constituted by high dispersion, weak contrast, and high net‐to‐gross ratio. We then compare the results to show which dispersion effect is dominating in reflection and transmission responses. In frequency domain, the influence of the intrinsic anelasticity is not negligible compared with the layering effect. Even if the main resonance patterns are the same, the resonance peaks for anelastic cases are shifted towards high frequencies and have a slightly lower amplitude than for elastic cases. These observations are more emphasized when we combine all effects and when the net‐to‐gross ratio increases, whereas the differences between anelastic and elastic results are less affected by the level of intrinsic dispersion and by the contrast between the layers. In the time domain, the amplitude of the responses is significantly lower when we consider intrinsic anelastic layers. Even if the phase response has the same features for elastic and anelastic cases, the anelastic model responses are clearly more attenuated than the elastic ones. We conclude that the frequency dependence due to the layering is not always dominating the responses. The frequency dependence coming from intrinsic visco‐elastic phenomena affects the amplitude of the responses in the frequency and time domains. Considering intrinsic attenuation and velocity dispersion of some layers should be analyzed while looking at seismic and log data in thin layered reservoirs.  相似文献   
30.
Ocean–atmosphere modes of climate variability in the Pacific and Indian oceans, as well as monsoons, regulate the regional wet and dry episodes in tropical regions. However, how those modes of climate variability, and their interactions, lead to spatial differences in drought patterns over tropical Asia at seasonal to interannual time scales remains unclear. This study aims to analyse the hydroclimate processes for both short- and long-term spatial drought patterns (3-, 6, 12- and 24-months) over Peninsular Malaysia using the Standardized Precipitation Index, Standardized Precipitation Evapotranspiration Index, and Palmer Drought Severity Index. Besides that, a generalized least squares regression is used to explore underlying circulation mechanisms of these spatio-temporal drought patterns. The tested drought indices indicate a tendency towards wetter conditions over Peninsular Malaysia. Based on principal component analysis, distinct spatio-temporal drought patterns are revealed, suggesting North–South and East–West gradients in drought distribution. The Pacific El Nino Southern Oscillation (ENSO), the South Western Indian Ocean (SWIO) variability, and the quasi-biennial oscillation (QBO) are significant contributors to the observed spatio-temporal variability in drought. Both the ENSO and the SWIO modulate the North–South gradient in drought conditions over Peninsular Malaysia, while the QBO contributes more to the East–West gradient. Through modulating regional moisture fluxes, the warm phases of the ENSO and the SWIO, and the western phases of the QBO weaken the southwest and northeast monsoon, leading to precipitation deficits and droughts over Peninsular Malaysia. The East–West or North–South gradients in droughts are related to the middle mountains blocking southwest and northeast moisture fluxes towards Peninsular Malaysia. In addition, the ENSO and QBO variations are significantly leading to short-term droughts (less than a year), while the SWIO is significantly associated with longer-duration droughts (2 years or more). Overall, this work demonstrates how spatio-temporal drought patterns in tropical regions are related to monsoons and moisture transports affected by the oscillations over the Pacific and Indian oceans, which is important for national water risk management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号