首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   7篇
  国内免费   1篇
大气科学   13篇
地球物理   15篇
地质学   35篇
海洋学   9篇
天文学   22篇
自然地理   11篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   6篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2001年   2篇
  2000年   6篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1990年   1篇
  1988年   2篇
  1983年   1篇
排序方式: 共有105条查询结果,搜索用时 921 毫秒
11.
We demonstrate that Shewanella oneidensis, a metal-reducing bacteria species with cytoplasmic-membrane-bound reductases and remarkably diverse respiratory capabilities, reduced Cr(VI) to Cr(II) in anaerobic cultures where chromate was the sole terminal electron acceptor. Individual cell microanalysis by transmission electron microscopy (TEM) using electron energy-loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDXS) demonstrates Cr(II) concentrated near the cytoplasmic membrane, suggesting the terminal reduction pathway is intracellularly localized. Further, estimated cellular Cr(II) concentrations are relatively high at upwards of 0.03-0.09 g Cr/g bacterium. Accumulation of Cr(II) is observed in S. oneidensis cells prior to the formation of submicron-sized precipitates of insoluble Cr(III) on their surfaces. Furthermore, under anaerobic conditions, Cr(III) precipitates that encrust cells are shown to contain Cr(II) that is likely bound in the net negatively charged extracellular biopolymers which can permeate the surfaces of the precipitates. In otherwise nearly identical incubations, Cr(III) precipitate formation was observed in cultures maintained anaerobic with bubbled nitrogen but not in three replicate cultures in an anaerobic chamber.  相似文献   
12.
We analyze the well-observed flare and coronal mass ejection (CME) from 1 October 2011 (SOL2011-10-01T09:18) covering the complete chain of effects – from Sun to Earth – to better understand the dynamic evolution of the CME and its embedded magnetic field. We study in detail the solar surface and atmosphere associated with the flare and CME using the Solar Dynamics Observatory (SDO) and ground-based instruments. We also track the CME signature off-limb with combined extreme ultraviolet (EUV) and white-light data from the Solar Terrestrial Relations Observatory (STEREO). By applying the graduated cylindrical shell (GCS) reconstruction method and total mass to stereoscopic STEREO-SOHO (Solar and Heliospheric Observatory) coronagraph data, we track the temporal and spatial evolution of the CME in the interplanetary space and derive its geometry and 3D mass. We combine the GCS and Lundquist model results to derive the axial flux and helicity of the magnetic cloud (MC) from in situ measurements from Wind. This is compared to nonlinear force-free (NLFF) model results, as well as to the reconnected magnetic flux derived from the flare ribbons (flare reconnection flux) and the magnetic flux encompassed by the associated dimming (dimming flux). We find that magnetic reconnection processes were already ongoing before the start of the impulsive flare phase, adding magnetic flux to the flux rope before its final eruption. The dimming flux increases by more than 25% after the end of the flare, indicating that magnetic flux is still added to the flux rope after eruption. Hence, the derived flare reconnection flux is most probably a lower limit for estimating the magnetic flux within the flux rope. We find that the magnetic helicity and axial magnetic flux are lower in the interplanetary space by ~?50% and 75%, respectively, possibly indicating an erosion process. A CME mass increase of 10% is observed over a range of \({\sim}\,4\,\mbox{--}\,20~\mathrm{R}_{\odot }\). The temporal evolution of the CME-associated core-dimming regions supports the scenario that fast outflows might supply additional mass to the rear part of the CME.  相似文献   
13.
14.
Abstract– We report Mg‐Al and Ca‐Ti isotopic data for meteoritic nanodiamonds separated from the Allende CV3 and Murchison CM2 meteorites. The goal of this study was to search for excesses in 26Mg and 44Ca, which can be attributed to the in situ decay of radioactive and now extinct 26Al and 44Ti, respectively. Previous work on presolar SiC and graphite had shown that 26Al/27Al and 44Ti/48Ti ratios in presolar grains can be used to discriminate between different types of stellar sources. Aluminum and Ti concentrations are low in the meteoritic nanodiamonds of this study. Murchison nanodiamonds have higher Al and Ti concentrations than the Allende nanodiamonds. This can be attributed to contamination and the presence of presolar SiC in the Murchison nanodiamond samples. 26Mg/24Mg and 44Ca/40Ca ratios are close to normal in Allende nanodiamonds with upper limits on the initial 26Al/27Al and 44Ti/48Ti ratios of approximately 1 × 10?3. These ratios are factors of 10–1000 and, respectively, 1–1000 lower than those of presolar SiC and graphite grains from supernovae. The 26Al/27Al and 44Ti/48Ti data for nanodiamonds are compatible with an asymptotic giant branch star or solar system origin, but not with a supernova origin of a major fraction of meteoritic nanodiamonds. The latter possibility cannot be excluded, though, as the diamond separates may contain significant amounts of contaminating Al and Ti, which would lower the inferred 26Al/27Al and 44Ti/48Ti ratios considerably.  相似文献   
15.
During the Pleistocene, the Rhine glacier system acted as a major south–north erosion and transport medium from the Swiss Alps into the Upper Rhine Graben, which has been the main sediment sink forming low angle debris fans. Only some aggradation resulted in the formation of terraces. Optically stimulated luminescence (OSL) and radiocarbon dating have been applied to set up a more reliable chronological frame of Late Pleistocene and Holocene fluvial activity in the western Hochrhein Valley and in the southern part of the Upper Rhine Graben. The stratigraphically oldest deposits exposed, a braided-river facies, yielded OSL age estimates ranging from 59.6 ± 6.2 to 33.1 ± 3.0 ka. The data set does not enable to distinguish between a linear age increase triggered by a continuous autocyclical aggradation or two (or more) age clusters, for example around 35 ka and around 55 ka, triggered by climate change, including stadial and interstadial periods (sensu Dansgaard–Oeschger cycles). The braided river facies is discontinuously (hiatus) covered by coarse-grained gravel-rich sediments deposited most likely during a single event or short-time period of major melt water discharge postdating the Last Glacial Maximum. OSL age estimates of fluvial and aeolian sediments from the above coarse-grained sediment layer are between 16.4 ± 0.8 and 10.6 ± 0.5 ka, and make a correlation with the Late Glacial period very likely. The youngest fluvial aggradation period correlates to the beginning of the Little Ice Age, as confirmed by OSL and radiocarbon ages.  相似文献   
16.
The trace element signatures of fluids were investigated by leaching experiments on natural samples of partly altered mafic igneous rocks recovered from the drilling site 1,256 of ODP Leg 206 on the Cocos plate (Central America). Experiments with ultrapure water were performed at 400 °C/0.4 GPa and 500 °C/0.7 GPa. Both fluids and residual solids were examined to obtain the partition coefficients (Dfluid/rock) of various trace elements. Element partition coefficients (Dfluid/rock) obtained at 500 °C/0.7 GPa are significantly lower compared to results obtained at 400 °C/0.4 GPa, which is in contrast to observations at higher pressures (2.2–6 GPa) and temperatures between 700 and 1,400 °C (Kessel et al. in Earth Planet Sci Lett 237: 873–892, 2005a; Spandler et al. in Chem Geol 239: 228–249, 2007). This finding may indicate a considerable pressure effect on the leaching processes and strongly divergent fluid–rock interactions in the upper part of a subduction zone at 0.4–0.7 GPa compared to deeper subduction areas with higher pressures. Furthermore, this may be interpreted as one of the earliest fractionation processes during the subduction of crustal material.  相似文献   
17.
We present a simple method of forecasting the geomagnetic storms caused by high-speed streams (HSSs) in the solar wind. The method is based on the empirical correlation between the coronal hole area/position and the value of the Dst index, which is established in a period of low interplanetary coronal mass ejection (ICME) activity. On average, the highest geomagnetic activity, i.e., the minimum in Dst, occurs four days after a low-latitude coronal hole (CH) crosses the central meridian. The amplitude of the Dst dip is correlated with the CH area and depends on the magnetic polarity of the CH due to the Russell – McPherron effect. The Dst variation may be predicted by employing the expression Dst(t)=(−65±25×cos λ)[A(t *)]0.5, where A(t *) is the fractional CH area measured in the central-meridian slice [−10°,10°] of the solar disc, λ is the ecliptic longitude of the Earth, ± stands for positive/negative CH polarity, and tt *=4 days. In periods of low ICME activity, the proposed expression provides forecasting of the amplitude of the HSS-associated Dst dip to an accuracy of ≈30%. However, the time of occurrence of the Dst minimum cannot be predicted to better than ±2 days, and consequently, the overall mean relative difference between the observed and calculated daily values of Dst ranges around 50%.  相似文献   
18.
Ice‐cored lateral and frontal moraine complexes, formed at the margin of the small, land‐based Rieperbreen glacier, central Svalbard, have been investigated through field observations and interpretations of aerial photographs (1936, 1961 and 1990). The main focus has been on the stratigraphical and dynamic development of these moraines as well as the disintegration processes. The glacier has been wasting down since the ‘Little Ice Age’ (LIA) maximum, and between 1936 and 1990 the glacier surface was lowered by 50–60 m and the front retreated by approximately 900 m. As the glacier wasted, three moraine ridges developed at the front, mainly as melting out of sediments from debris‐rich foliation and debris‐bands formed when the glacier was polythermal, probably during the LIA maximum. The disintegration of the moraines is dominated by wastage of buried ice, sediment gravity‐flows, meltwater activity and some frost weathering. A transverse glacier profile with a northward sloping surface has developed owing to the higher insolation along the south‐facing ice margin. This asymmetric geometry also strongly affects the supraglacial drainage pattern. Lateral moraines have formed along both sides of the glacier, although the insolation aspect of the glacier has resulted in the development of a moraine 60 m high along its northern margin. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
19.
20.
In Colombia, the access to climate related observational data is restricted and their quantity is limited. But information about the current climate is fundamental for studies on present and future climate changes and their impacts. In this respect, this information is especially important over the Colombian Caribbean Catchment Basin (CCCB) that comprises over 80 % of the population of Colombia and produces about 85 % of its GDP. Consequently, an ensemble of several datasets has been evaluated and compared with respect to their capability to represent the climate over the CCCB. The comparison includes observations, reconstructed data (CPC, Delaware), reanalyses (ERA-40, NCEP/NCAR), and simulated data produced with the regional climate model REMO. The capabilities to represent the average annual state, the seasonal cycle, and the interannual variability are investigated. The analyses focus on surface air temperature and precipitation as well as on surface water and energy balances. On one hand the CCCB characteristics poses some difficulties to the datasets as the CCCB includes a mountainous region with three mountain ranges, where the dynamical core of models and model parameterizations can fail. On the other hand, it has the most dense network of stations, with the longest records, in the country. The results can be summarised as follows: all of the datasets demonstrate a cold bias in the average temperature of CCCB. However, the variability of the average temperature of CCCB is most poorly represented by the NCEP/NCAR dataset. The average precipitation in CCCB is overestimated by all datasets. For the ERA-40, NCEP/NCAR, and REMO datasets, the amplitude of the annual cycle is extremely high. The variability of the average precipitation in CCCB is better represented by the reconstructed data of CPC and Delaware, as well as by NCEP/NCAR. Regarding the capability to represent the spatial behaviour of CCCB, temperature is better represented by Delaware and REMO, while precipitation is better represented by Delaware. Among the three datasets that permit an analysis of surface water and energy balances (REMO, ERA-40, and NCEP/NCAR), REMO best demonstrates the closure property of the surface water balance within the basin, while NCEP/NCAR does not demonstrate this property well. The three datasets represent the energy balance fairly well, although some inconsistencies were found in the individual balance components for NCEP/NCAR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号