首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
  国内免费   2篇
测绘学   9篇
大气科学   6篇
地球物理   3篇
地质学   24篇
天文学   1篇
综合类   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1981年   1篇
排序方式: 共有44条查询结果,搜索用时 31 毫秒
11.
Climate Dynamics - South Asian monsoon exhibits multiscale spatiotemporal variability. Analyzing the nature and behavior of numerical weather forecast error associated with these space-time...  相似文献   
12.
The Gondwana sediments comprising fine-grained shales, carbonaceous shales, sandstones and the coal horizon in borecore RT-4 (approximately 547.00m thick) from Tamra block, Raniganj Coalfield, Damodar Basin, are analyzed palynologically. Based on the distribution pattern of marker palynotaxa, two assemblage zones are identified. In the Barren Measures Formation, dominance of enveloping monosaccate (Densipollenites) along with striate bisaccate (Striatopodocarpites, Faunipollenites) pollen taxa, and the FAD’s of Kamthisaccites and Arcuatipollenites observed at 30.75, have equated this strata (30.75–227.80 m thick) with the Raniganj Formation of Late Permian in age. Downwards in the Barakar Formation, between 423.80–577.70 m depths, an abundance of non-striate (Scheuringipollenites) and striate (Faunipollenites and Striatopodocarpites) bisaccate pollen taxa is observed, that dates late Early Permian in age.  相似文献   
13.
The inelastic (design) spectra characterizing a seismic hazard are generally obtained by the scaling‐down of the elastic (design) spectra via a set of response modification factors. The component of these factors, which accounts for the ductility demand ratio, is known as the strength reduction factor (SRF), and the variation of this factor with initial period of the oscillator is called an SRF spectrum. This study considers scaling of the SRF spectrum in the case of an elasto‐plastic oscillator with strength and stiffness degradation characteristics. Two models are considered: one depending directly on the characterization of source and site parameters and the other depending on the normalized design spectrum characterization of the seismic hazard. The first model is the same as that proposed earlier by the second author, and is given in terms of earthquake magnitude, strong‐motion duration, predominant period, geological site conditions, ductility demand ratio, and ductility supply‐related parameter. The second model is a new model proposed here in terms of the normalized pseudo‐spectral acceleration values (to unit peak ground acceleration), ductility demand ratio and ductility supply‐related parameter. For each of these models, least‐square estimates of the coefficients are obtained through regression analyses of the data for 956 recorded accelerograms in western U.S.A. Parametric studies carried out with the help of these models confirm the dependence of SRFs on strong‐motion duration and earthquake magnitude besides predominant period and site conditions. It is also seen that degradation characteristics make a slight difference for high ductility demands and may lead to lower values of SRFs, unless the oscillators are very flexible. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
14.
The shear strength reduction technique is becoming more and more popular to determine the factor-of-safety for geotechnical constructions, especially for slopes. At present, two in principal different procedures are used to apply the numerical shear strength reduction technique for materials characterised by non-linear failure envelopes, like the Hoek–Brown criterion. One procedure is based on the determination on local stress and strength values, whereas the other is based on a global linearization of the non-linear failure envelope. This article shortly describes and discusses these two different procedures and compares results for a broad spectrum of parameter constellations based on slope stability calculations. The local approach is physically more correct. The global approach can be considered as a first approximation. A comparison of both methods reveal that the global approach in comparison to the local approach, can leads to a deviation of up to 15?% in both directions. If one considers the local approach as the ‘correct’ one, depending on the parameters the results of the global approach can lie on the safe or unsafe site. The practical conclusion is that evaluation of slope stability using the global approach can result in uneconomic slope design or overestimation of safety margin. The use of the local approach instead of the global should be preferred. In case of small safety margins (e.g. 20?% or less) the use of the local approach is strictly recommended.  相似文献   
15.
Coal fires are serious problem in Raniganj coalfield as it is the case for some of the other coalfields of India like Jharia coalfield. Earlier efforts were made to map the coal fires of this coal-field based on satellite observation. But the restricted distribution of major coal fires in the particular portion of the coalfield makes the basis for finding the geological control if responsible for coal fire distribution. In present study, night time thermal data of ASTER (Advance spaceborne thermal emission and reflection radiometer) is used to map the latest distribution (December, 2006) of coal fires in the Raniganj coalfield. Coal fire map shows that most significant zone affected by fire is at the north-western portion of the coalfield; where NE-trending open cast mines are affected by fire. This fire zone is associated with high grade coal of the Barakar Formation. Coal fires are also mapped in open cast pits of Jambad-Mangalpur area occurring over rocks of the Raniganj Formation. By integrating geological map and satellite-derived coal fire map of Raniganj coal field, it is observed that the coal fires detected by remote sensing study are spatially associated with intraformational faults. These faults may have played significant role in supplying oxygen to these coal-fires and allowing them to propagate down the depth along the trends of the faults.  相似文献   
16.
Recent developments in sensor technology have given an onset for studying the earth surface features based on the detailed spectroscopic observation of different rocks and minerals. The spectroscopic profiles of the rocks are always quite different than their constituent minerals however, the spectral profile of a rock can be broadly reconstituted from the spectral profile of each constituent minerals. Interpretation of rock spectra using the spectra of constituent minerals based on relative spectral matching can bring out interesting information on the rock. Present study is an effort toward this and it highlights how visible-near infrared-shortwave-infrared (VNIR-SWIR) rock spectroscopy acts as an useful tool for understanding the rock-mineralogy in indirect and rapid way. It has also been observed that spectral signatures of rocks; studied in present case, are related to spectral signatures of constituent minerals although absorption features of constituent mineral in the rock are also modified by the other minerals juxtaposed in the rock fabric. However, each rock of the study area has their significant absorption features, but many of the absorption signatures are closely spaced, as altered rock has significant absorption at 2305 nm whereas amphibolite has its important absorption signature in 2385 nm and metabasalt has its significant absorption at 2342 nm. Therefore spectral measurement of high spectral resolution with appreciable signal to noise ratio (SNR) only can detect rocks from each other based on the absorption signatures mentioned above (each of which is 10 to 20 nm apart from the other) and therefore spectroscopy of rock is an innovative technique to map rocks and minerals based on the spectral signatures.  相似文献   
17.
Recent works suggest Proterozoic plate convergence along the southeastern margin of India which led to amalgamation of the high grade Eastern Ghats belt (EGB) and adjoining fold-and-thrust belts to the East Dhrawar craton. Two major thrusts namely the Vellikonda thrust at the western margin of the Nellore Schist belt (NSB) and the Maidukuru thrust at the western margin of the Nallamalai fold belt (NFB) accommodate significant upper crustal shortening, which is indicated by juxtaposition of geological terranes with distinct tectonostratigraphy, varying deformation intensity, structural styles and metamorphic grade. Kinematic analysis of structures and fabric of the fault zone rocks in these intracontinental thrust zones and the hanging wall and footwall rocks suggest spatially heterogeneous partitioning of strain into various combinations of E-W shortening, top-to-west shear on stratum parallel subhorizontal detachments or on easterly dipping thrusts, and a strike slip component. Although relatively less prominent than the other two components of the strain triangle, non-orthogonal slickenfibres associated with flexural slip folds and mylonitic foliation-stretching lineation orientation geometry within the arcuate NSB and NFB indicate left lateral strike slip subparallel to the overall N-S trend. On the whole an inclined transpression is inferred to have controlled the spatially heterogeneous development of thrust related fabric in the terrane between the Eastern Ghats belt south of the Godavari graben and the East Dharwar craton.  相似文献   
18.
19.
Using the United States Geological Survey global daily data sets for 31 years, we have tabulated the earthquake intensities on a global latitude longitude grid and represented them as a finite sum of spherical harmonics. An interesting aspect of this global view of earthquakes is that we see a low frequency modulation in the amplitudes of the spherical harmonic waves. There are periods when these waves carry larger amplitudes compared to other periods. A power spectral analysis of these amplitudes clearly shows the presence of a low frequency oscillation in time with a largest mode around 40 days. That period also coincides with a well-know period in the atmosphere and in the ocean called the Madden Julian Oscillation. This paper also illustrates the existence of a spatial oscillation in strong earthquake occurrences on the western rim of the Pacific plate. These are like pendulum oscillations in the earthquake frequencies that swing north or south along the western rim at these periods. The spatial amplitude of the oscillation is nearly 10,000 km and occurs on an intraseasonal time scale of 20–60 days. A 34-year long United States Geological Survey earthquake database was examined in this context; this roughly exhibited 69 swings of these oscillations. Spectral analysis supports the intraseasonal timescale, and also reveals higher frequencies on a 7–10 day time scale. These space-time characteristics of these pendulum-like earthquake oscillations are similar to those of the MJO. Fluctuations in the length of day on this time scale are also connected to the MJO. Inasmuch as the atmospheric component of the MJO will torque the solid earth through mountain stresses, we speculate the MJO and our proposed earthquake cycle may be connected. The closeness of these periods calls for future study.  相似文献   
20.
Hurricane Wind Power Spectra, Cospectra, and Integral Length Scales   总被引:1,自引:0,他引:1  
Atmospheric turbulence is an important factor in the modelling of wind forces on structures and the losses they produce in extreme wind events. However, while turbulence in non-hurricane winds has been thoroughly researched, turbulence in tropical cyclones and hurricanes that affect the Gulf and Atlantic coasts has only recently been the object of systematic study. In this paper, Florida Coastal Monitoring Program surface wind measurements over the sea surface and open flat terrain are used to estimate tropical cyclone and hurricane wind spectra and cospectra as well as integral length scales. From the analyses of wind speeds obtained from five towers in four hurricanes it can be concluded with high confidence that the turbulent energy at lower frequencies is considerably higher in hurricane than in non-hurricane winds. Estimates of turbulence spectra, cospectra, and integral turbulence scales presented can be used for the development in experimental facilities of hurricane wind flows and the forces they induce on structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号