首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   8篇
测绘学   3篇
大气科学   3篇
地球物理   55篇
地质学   18篇
海洋学   9篇
天文学   4篇
自然地理   14篇
  2021年   3篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2014年   4篇
  2013年   5篇
  2012年   3篇
  2011年   8篇
  2010年   10篇
  2009年   6篇
  2008年   3篇
  2007年   3篇
  2006年   7篇
  2005年   3篇
  2004年   14篇
  2003年   2篇
  2002年   9篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1994年   5篇
  1991年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
31.
-- In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by Dieterich and Kilgore (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance Dc on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.  相似文献   
32.
— The Load-Unload Response Ratio (LURR) method is an intermediate-term earthquake prediction approach that has shown considerable promise. It involves calculating the ratio of a specified energy release measure during loading and unloading where loading and unloading periods are determined from the earth tide induced perturbations in the Coulomb Failure Stress on optimally oriented faults. In the lead-up to large earthquakes, high LURR values are frequently observed a few months or years prior to the event. These signals may have a similar origin to the observed accelerating seismic moment release (AMR) prior to many large earthquakes or may be due to critical sensitivity of the crust when a large earthquake is imminent. As a first step towards studying the underlying physical mechanism for the LURR observations, numerical studies are conducted using the particle based lattice solid model (LSM) to determine whether LURR observations can be reproduced. The model is initialized as a heterogeneous 2-D block made up of random-sized particles bonded by elastic-brittle links. The system is subjected to uniaxial compression from rigid driving plates on the upper and lower edges of the model. Experiments are conducted using both strain and stress control to load the plates. A sinusoidal stress perturbation is added to the gradual compressional loading to simulate loading and unloading cycles and LURR is calculated. The results reproduce signals similar to those observed in earthquake prediction practice with a high LURR value followed by a sudden drop prior to macroscopic failure of the sample. The results suggest that LURR provides a good predictor for catastrophic failure in elastic-brittle systems and motivate further research to study the underlying physical mechanisms and statistical properties of high LURR values. The results provide encouragement for earthquake prediction research and the use of advanced simulation models to probe the physics of earthquakes.  相似文献   
33.
--It has been argued that power-law time-to-failure fits for cumulative Benioff strain and an evolution in size-frequency statistics in the lead-up to large earthquakes are evidence that the crust behaves as a Critical Point (CP) system. If so, intermediate-term earthquake prediction is possible. However, this hypothesis has not been proven. If the crust does behave as a CP system, stress correlation lengths should grow in the lead-up to large events through the action of small to moderate ruptures and drop sharply once a large event occurs. However this evolution in stress correlation lengths cannot be observed directly. Here we show, using the lattice solid model to describe discontinuous elasto-dynamic systems subjected to shear and compression, that it is for possible correlation lengths to exhibit CP-type evolution. In the case of a granular system subjected to shear, this evolution occurs in the lead-up to the largest event and is accompanied by an increasing rate of moderate-sized events and power-law acceleration of Benioff strain release. In the case of an intact sample system subjected to compression, the evolution occurs only after a mature fracture system has developed. The results support the existence of a physical mechanism for intermediate-term earthquake forecasting and suggest this mechanism is fault-system dependent. This offers an explanation of why accelerating Benioff strain release is not observed prior to all large earthquakes. The results prove the existence of an underlying evolution in discontinuous elasto-dynamic systems which is capable of providing a basis for forecasting catastrophic failure and earthquakes.  相似文献   
34.
-- The main idea of the Load-Unload Response Ratio (LURR) is that when a system is stable, its response to loading corresponds to its response to unloading, whereas when the system is approaching an unstable state, the response to loading and unloading becomes quite different. High LURR values and observations of Accelerating Moment/Energy Release (AMR/AER) prior to large earthquakes have led different research groups to suggest intermediate-term earthquake prediction is possible and imply that the LURR and AMR/AER observations may have a similar physical origin. To study this possibility, we conducted a retrospective examination of several Australian and Chinese earthquakes with magnitudes ranging from 5.0 to 7.9, including Australia's deadly Newcastle earthquake and the devastating Tangshan earthquake. Both LURR values and best-fit power-law time-to-failure functions were computed using data within a range of distances from the epicenter. Like the best-fit power-law fits in AMR/AER, the LURR value was optimal using data within a certain epicentral distance implying a critical region for LURR. Furthermore, LURR critical region size scales with mainshock magnitude and is similar to the AMR/AER critical region size. These results suggest a common physical origin for both the AMR/AER and LURR observations. Further research may provide clues that yield an understanding of this mechanism and help lead to a solid foundation for intermediate-term earthquake prediction.  相似文献   
35.
We report the results of four soil H2 surveys carried out in 2000–2003 at Poás volcano, Costa Rica, to investigate the soil H2 distribution and evaluate the diffuse H2 emission as a potential surveillance tool for Poás volcano. Soil gas H2 contents showed a wide range of concentration from 0.2 to 7,059 ppmV during the four surveys. Maps of soil gas H2 based on Sequential Gaussian Simulation showed low H2 concentration values in the soil atmosphere (<0.7 ppmV) for most of the study area, whereas high soil gas H2 values were observed inside the active crater of Poás. A significant increase in soil gas H2 concentration was observed inside the active crater during 2001 and 2002 with respect to year 2000, followed by a decrease in 2003. The observed spatial and temporal variations of soil H2 concentration have been well correlated with seismicity, microgravimetry and fumarolic chemistry changes which occurred during this study. These observations evidence changes in the shallow magmatic-hydrothermal system of Poás, and it might be related to a potential magmatic intrusion during the period 1998–2004. Therefore, monitoring diffuse H2 emission of Poás has become an important geochemical tool for the monitoring of its volcanic activity.  相似文献   
36.
37.
Monitoring the temporal variation of solute concentrations in streams at high temporal frequency can play an important role in understanding the hydrological and biogeochemical behaviour of catchments. UV–visible spectrometry is a relatively inexpensive and easily used tool to infer those concentrations in streams at high temporal resolution. However, it is not yet clear which solutes can be modelled with such an in-situ sensor. Here, we installed a UV–visible spectrometer probe (200–750 nm) in a high-altitude tropical Páramo stream to record the wavelength absorbance at a 5-min temporal resolution. For calibration, we simultaneously sampled stream water at a 4-h frequency from February 2018 to March 2019 for subsequent laboratory analysis. Absorbance spectra and laboratory-determined solute concentrations were used to identify the best calibration method and to determine which solute concentrations can be effectively inferred using in situ spectrometry through the evaluation of six calibration methods of different mathematical complexity. Based on the Nash – Sutcliffe efficiency (NSE) and Akaike information criterion metrics, our results suggest that multivariate methods always outperformed simpler strategies to infer solute concentrations. Eleven out of 21 studied solutes (Al, DOC, Ca, Cu, K, Mg, N, Na, Rb, Si and Sr) were successfully calibrated (NSE >0.50) and could be inferred using UV–visible spectrometry even with a reduced daily sampling frequency. It is worth noting that most calibrated solutes were correlated with wavelengths (WLs) in the low range of the spectra (i.e., UV range) and showed relatively good correlation with DOC. The latter suggests that estimation of metal concentrations could be possible in other streams with a high organic load (e.g., peat dominated catchments). In situ operation of spectrometers to monitor water quality parameters at high temporal frequency (sub-hourly) can enhance the protection of human water supplies and aquatic ecosystems as well as providing information for assessing catchment hydrological functioning.  相似文献   
38.
This study investigates the application of sulphur isotope ratios (δ34S) in combination with carbon (δ13C) and nitrogen (δ15N) ratios to understand the influence of environmental sulphur on the isotopic composition of archaeological human and faunal remains from Roman era sites in Oxfordshire, UK. Humans (n = 83), terrestrial animals (n = 11), and freshwater fish (n = 5) were analysed for their isotope values from four locations in the Thames River Valley, and a broad range of δ34S values were found. The δ34S values from the terrestrial animals were highly variable (−13.6‰ to +0.5‰), but the δ34S values of the fish were clustered and 34S-depleted (−20.9‰ to −17.3‰). The results of the faunal remains suggest that riverine sulphur influenced the terrestrial sulphur isotopic signatures. Terrestrial animals were possibly raised on the floodplains of the River Thames, where highly 34S-depleted sulphur influenced the soil. The humans show the largest range of δ34S values (−18.8‰ to +9.6‰) from any archaeological context to date. No differences in δ34S values were found between the males (−7.8 ± 6.0‰) and females (−5.3 ± 6.8‰), but the females had a linear correlation (R2 = 0.71; p < 0.0001) between their δ15N and δ34S compositions. These δ34S results suggest a greater dietary variability for the inhabitants of Roman Oxfordshire than previously thought, with some individuals eating solely terrestrial protein resources and others showing a diet almost exclusively based on freshwater protein such as fish. Such large dietary variability was not visible by analysing only the carbon and nitrogen isotope ratios, and this research represents the largest and most detailed application of δ34S analysis to examine dietary practices (including breastfeeding and weaning patterns) during the Romano-British Period.  相似文献   
39.
This paper describes the use of the Stable Point Network technique, a Persistent Scatterer Interferometry SAR technique, for the analysis of the Portalet landslide area (Central Pyrenees, Spain). For this purpose, different SAR datasets acquired by ERS-1, ERS-2, ENVISAT and TerraSAR-X satellites have been analysed. The use of different SAR images acquired by satellite radar sensors operating at different microwave lengths has allowed for a comparative assessment and illustration of the advantages and disadvantages of these satellites for landslide detection and monitoring. In the introduction, differential interferometry and the study area are briefly described. Then the specifics of the SPN processing and the results of the different datasets are described and compared. In Analysis of the results: the Portalet landslide area, the Portalet landslide area is introduced and the radar displacement measurements are analysed with available geo-information data. Additionally, X-band measurements are compared with those gathered by a ground-based SAR for a previous project. Finally, the most relevant conclusions of this work are discussed.  相似文献   
40.
High-mountain basins provide a source of valuable water resources. This paper presents hydrological models for the evaluation of water resources in the high-mountain Zêzere river basin in Serra da Estrela, Central Portugal. Models are solved with VISUAL BALAN v2.0, a code which performs daily water balances in the root zone, the unsaturated zone and the aquifer and requires a small number of parameters. A lumped hydrological model fails to fit measured stream flows. Its limitations are overcome by considering the dependence of the temperature and precipitation data with elevation and the spatial variability in hydrogeomorphological variables with nine sub-basins of uniform parameters. Model parameters are calibrated by fitting stream flow measurements in the Zêzere river. Computed stream flows are highly sensitive to soil thickness, whereas computed groundwater recharge is most sensitive to the interflow and percolation recession coefficients. Interflow is the main component of total runoff, ranging from 41 to 55% of annual precipitation. High interflows are favored by the steep relief of the basin, by the presence of a high permeability soil overlying the fractured low permeability granitic bedrock and by the extensive subhorizontal fracturing at shallow depths. Mean annual groundwater recharge ranges from 11 to 15% of annual precipitation. It has a significant uncertainty due to uncertainties in soil parameters. This methodology proves to be useful to handle the research difficulties regarding a complex mountain basin in a context of data scarcity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号