首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   41篇
  国内免费   4篇
地球物理   63篇
地质学   1篇
综合类   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2011年   7篇
  2010年   3篇
  2009年   4篇
  2008年   7篇
  2007年   11篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
51.
GPS观测网络中共模分量的相关加权叠加滤波   总被引:1,自引:0,他引:1       下载免费PDF全文
田云锋  沈正康 《地震学报》2011,33(2):198-208
基于GPS台站间的位置时间序列相关分析,提出了一种去除共模分量(common-mode component,简写为CMC)的空间滤波方法--相关加权叠加滤波.该方法采用台站间的相关性大小作为空问滤波的权重,同时考虑距离、总体相关性水平等因素,无需现有滤波方法所需的空间均匀分布这一假设.针对美国板块边界计划中310个GP...  相似文献   
52.
青藏高原现代地壳运动与活动断裂带关系的模拟实验   总被引:11,自引:4,他引:11       下载免费PDF全文
本文以GPS观测、大地热流测量、较高精度地形数据、全球板块相对运动的REVEL模型为基础,建立了以青藏高原现代构造活动为主要研究对象的东亚地区构造形变场有限元模型.数值模拟结果显示,青藏高原内部和周边地区走滑断裂带的活动对东亚地区地壳运动速率和方向有较大的影响,特别是对青藏高原物质向东南方向运动有显著影响;不同构造块体岩石圈强度的差异直接影响了川滇菱形地块边界断层错动性质.在考虑青藏高原地形附加重力作用和周边板块汇聚作用对现今大型断裂带运动特征控制作用的同时,岩石圈之下的橄榄岩软流圈至转换带物质对流对岩石圈的拖曳力也是必须考虑的底部边界条件.  相似文献   
53.
运用走滑地震造成的地震前后应力方向偏转和地震应力降Δτ推导得到地震震源处偏应力量值τ的解析表达式为τ=[Δτcos2(φ′[KG-*2]P-E)]/sin2(φ′[KG-*2]P-φP)(其中,φ\-P和φ′[KG-*2]P分别为地震前后的统计P轴走向,E为地震断层走向.).当震前P轴与震后P轴与断层走向夹角为45°时,该公式失效.对偏应力值与应力降比值随应力场主压应力轴与断层走向夹角及应力场主压应力轴偏转的变化进行分析表明,相同应力降造成的应力轴偏转越大,地下偏应力越小; 断层走向越接近主压应力轴方向,地震应力降场对偏应力场的贡献越小.将该方法运用于Landers地震震源区,求得了该地震Homestead Valley段的偏应力量值为10MPa.  相似文献   
54.
兰德斯地震断层面及其附近余震产生的位移场研究   总被引:5,自引:1,他引:4       下载免费PDF全文
根据兰德斯(Landers)地震断层面及其附近余震目录计算这些余震产生的位移场, 并与根据兰德斯地震破裂面滑动分布计算的主震产生的位移场进行对比. 结果表明, 断层面及其附近余震产生位移场的方向与主震大体一致, 余震破裂总体来看是继承性的. 余震产生的位移场达厘米量级, 足可以被GPS观测所捕获. 在利用地震震后随时间变化位移场研究地球粘性结构、 地震震后滑动分布等地球物理问题时, 扣除余震产生的位移场可以最大限度地减小反演结果的不确定性, 得到符合实际的结果.   相似文献   
55.
非构造形变对GPS连续站位置时间序列的影响和修正   总被引:38,自引:6,他引:32       下载免费PDF全文
GPS观测得到的地壳形变场通常包含有构造形变与非构造形变二类信息, 去除其中的非构造形变信息对于有效运用GPS数据研究构造形变场至关重要. 本文运用国际卫星对地观测资料及各类地球物理模型, 定量计算海潮、大气、积雪和土壤水、海洋非潮汐4项负荷效应造成的地壳非构造形变, 并以此研究和修正这些非构造形变对中国地壳运动观测网络GPS基准站位置时间序列的影响. 研究发现此4项负荷效应, 特别是大气、积雪和土壤水, 对于测站垂向位置的影响显著. 通过模型改正可以使测站垂向位置的RMS降低~1 mm, 占其总量的~11%. 对于垂向时间序列的周年项部分, 这一改正可降低其振幅的37%. 研究还表明经过地球物理模型改正和周年、半周年谐波拟合改正的时间序列比起仅经过周年、半周年谐波拟合改正的时间序列更为平滑, 表明地球物理模型改正对于消除非构造形变场的作用不是周年、半周年谐波拟合改正所能替代的.  相似文献   
56.
2008年汶川大地震对周围断层的影响   总被引:55,自引:4,他引:51       下载免费PDF全文
2008年5月12日的汶川地震明显地改变了区域地震的应力场.理解这种应力场的改变对周围断层构造加载进程和区域地震危险性的改变非常重要.本文以汶川地震的破裂为驱动源,计算了该地震造成周围断层上的静态库仑破裂应力变化.结果表明,汶川大地震的发生使得龙门山断裂北部和最南端、鲜水河断裂最南端、东昆仑断裂、陇县——宝鸡断裂、鄂拉山断裂、白玉断裂、日月山断裂南端、马边——盐津断裂南部、班公错——嘉黎断裂西部、则木河断裂的库仑破裂应力增加,量值达0.00001——0.06MPa.库仑破裂应力增加尤为显著的断裂量值分别为:龙门山断裂的地震断层南端最大增加0.01MPa、北端0.03MPa,秦岭南缘断裂的西南部最大增加0.03MPa,东昆仑断裂的东南部为0.007MPa,地震破裂断层西南部的鲜水河断裂为0.005MPa,西秦岭北缘断裂的天水——宝鸡段为0.004MPa,陇县——宝鸡断裂为0.0003MPa.该地震还使得龙日坝断裂、怒江断裂、西秦岭北缘断裂西部、秦岭北缘断裂、庄浪河断裂、日月山断裂北部、海原断裂、岷江断裂、玉树——玛曲断裂、金沙江断裂的库仑破裂应力减少;减少尤为显著的断裂为龙门山断裂的断层破裂段、岷江断裂和鲜水河断裂的炉霍段,其库仑破裂应力减少分别达0.04——0.7MPa,0.001——0.1MPa和0.008——0.01MPa.本次地震在小金河、安宁河和大凉山断裂面上产生的库仑应力变化很小,对断层地震活动没有显著影响.   相似文献   
57.
We calculated the Coulomb failure stress change generated by the 1976 Tangshan earthquake that is projected onto the fault planes and slip directions of large subsequent aftershocks.Results of previous studies on the seismic fail-ure distribution,crustal velocity and viscosity structures of the Tangshan earthquake are used as model constraints.Effects of the local pore fluid pressure and impact of soft medium near the fault are also considered.Our result shows that the subsequent Luanxian and Ninghe earthquakes occurred in the regions with a positive Coulomb fail-ure stress produced by the Tangshan earthquake.To study the triggering effect of the Tangshan,Luanxian,and Ninghe earthquakes on the follow-up small earthquakes,we first evaluate the possible focal mechanisms of small earthquakes according to the regional stress field and co-seismic slip distributions derived from previous studies,assuming the amplitude of regional tectonic stress as 10 MPa.By projecting the stress changes generated by the above three earthquakes onto the possible fault planes and slip directions of small earthquakes,we find that the "butterfly" distribution pattern of increased Coulomb failure stress is consistent with the spatial distribution of follow-up earthquakes,and 95% of the aftershocks occurred in regions where Coulomb failure stresses increase,indicating that the former large earthquakes modulated occurrences of follow-up earthquakes in the Tangshan earthquake sequence.This result has some significance in rapid assessment of aftershock hazard after a large earthquake.If detailed failure distribution,seismogenic fault in the focal area and their slip features can be rapidly determined after a large earthquake,our algorithm can be used to predict the locations of large aftershocks.  相似文献   
58.
GPS连续监测鲜水河断裂形变场动态演化   总被引:8,自引:0,他引:8  
利用跨鲜水河断裂的二对GPS连续观测点资料, 获得了跨鲜水河断裂高精度形变场(误差约1 mm)的动态演化轨迹. 该轨迹清晰地反映了鲜水河断裂乾宁段和道孚段形变场的明显不同, 前者为稳态、后者为非稳态. 道孚段的非稳态形变可能与鲜水河断裂在此分段并呈现东、西二支有关. 采用一多段脆韧转换带模型对形变场动态演化给出初步的模拟与解释: 鲜水河断裂南段转换带内蠕滑稳定, 而北段和道孚段呈现间歇状态且平均滑移率高于南段. 这可能与断层面介质的物理性质有关, 揭示当前断裂南段转换层强度可能高于北段, 对应于更长的发震周期.  相似文献   
59.
梁芳  孙建宝  沈正康  徐锡伟 《地震》2013,33(4):43-54
地壳形变是评估地震灾害和地质灾害的重要依据之一。 北京及其周边地区的形变状况一直以来缺乏全面、 可靠的观测数据, 阻碍了对该地区这两种灾害的客观认识。 本研究利用L波段InSAR形变观测数据, 调查北京及其周边190 km×150 km范围内, 约3年时间内的累积地壳形变, 详细给出北京地区2007—2010年间的地壳形变基本特征, 为认识该地区的灾害提供参考。 研究结果显示, 该地区主要地壳形变源为地下水开采造成的地面沉降, 观测时间内累积的最大雷达视线向形变达到了37.6 cm。 地面沉降的严重影响, 以及大气噪声的干扰, 造成活动构造变形很难从现有数据定量分辨出来, 但可以确定在此观测期间内较大尺度(长度>50~100 km)的断层活动及其构造变形比较微弱, 对北京地区的地壳形变贡献较小。 最重要的一点是, 北京地区的地壳形变呈条块状分布, 清晰显示地面沉降与活动构造, 特别是NW走向的南口—孙河断层, 存在较强的相关性。  相似文献   
60.
2015年尼泊尔强震序列对中国大陆的应力影响   总被引:11,自引:3,他引:8       下载免费PDF全文
基于2015年尼泊尔地震序列的破裂模型及均匀弹性半空间模型,计算了该地震序列传递到中国西藏境内发生在定日县地震和聂拉木县地震的应力.2015年尼泊尔地震序列导致定日县地震和聂拉木地震节面和滑动方向的库仑应力增加(2~3)×103 Pa和(2.4~3.1)×105 Pa,表明这两个地震受到尼泊尔地震序列的触发.其次,我们计算了2015年尼泊尔地震序列在中国大陆及其附近主要活动断层上产生的库仑应力变化.喜马拉雅主山前逆冲断裂和青藏高原内部的拉张正断层上的库仑应力有较大的增加,而青藏高原的走滑断裂,如阿尔金断裂、东昆仑断裂、玉树玛曲断裂、班公错断裂西部、嘉黎断裂的库仑应力有较大的降低.天山南北两侧的断裂库仑应力降低.而华北及东北、华南地区的库仑应力变化几乎可以忽略不计.最后,计算了该地震序列造成的水平应力变化.水平面应力在2015年尼泊尔地震序列北向(青藏高原大部和新疆区域)增加(拉张),而在地震序列东侧的西藏南部和川滇地区南部降低(压缩),在华北和东北仅有少许增加,在华南地区有少许降低.在中国西部,主压应力表现为以2015年地震序列为圆心的向外辐射状,而主张应力方向与同心圆切线方向大体一致.水平主压应力方向在东北地区为北东向,在华北地区为北东东向,在华南地区为南东东向.这种模式与现今构造应力场方向相似,表现了2015尼泊尔地震序列所代表的印度板块和欧亚板块的碰撞是中国大陆构造变形的主要动力来源.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号