首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25144篇
  免费   3526篇
  国内免费   4896篇
测绘学   1322篇
大气科学   4244篇
地球物理   5670篇
地质学   12409篇
海洋学   3086篇
天文学   2321篇
综合类   1851篇
自然地理   2663篇
  2024年   94篇
  2023年   337篇
  2022年   1047篇
  2021年   1266篇
  2020年   1151篇
  2019年   1253篇
  2018年   1559篇
  2017年   1418篇
  2016年   1489篇
  2015年   1174篇
  2014年   1466篇
  2013年   1511篇
  2012年   1456篇
  2011年   1626篇
  2010年   1498篇
  2009年   1410篇
  2008年   1329篇
  2007年   1375篇
  2006年   1160篇
  2005年   713篇
  2004年   641篇
  2003年   682篇
  2002年   763篇
  2001年   700篇
  2000年   636篇
  1999年   738篇
  1998年   599篇
  1997年   633篇
  1996年   520篇
  1995年   491篇
  1994年   512篇
  1993年   388篇
  1992年   323篇
  1991年   234篇
  1990年   192篇
  1989年   183篇
  1988年   176篇
  1987年   113篇
  1986年   100篇
  1985年   82篇
  1984年   77篇
  1983年   72篇
  1982年   74篇
  1981年   51篇
  1980年   29篇
  1979年   38篇
  1978年   22篇
  1977年   18篇
  1975年   24篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
91.
The article describes heat exchange between basaltic and rhyolite melts accompanied by fractional crystallization of phases in a basaltic melt. A numerical model has been developed for the homogenization mechanism of magma composition during intrusion of basaltic magma batches into felsic magma chambers. The results of numerical modeling demonstrate that the time needed for cooling the basalts and their fractionation to rhyolite melts is much shorter than the time required for chemical interaction based on diffusive mechanisms.  相似文献   
92.
This paper discusses issues of the decline of the reservoir properties of arenaceous-argillaceous rocks as a result of declining porosity due to long-term operation of underground gas storage facilities. An analysis of the many-year operation of storage facilities, as well as calculation, has revealed that the active capacity of a storage reservoir gradually decreases under certain conditions of underground storage operations. We performed a series of experiments with model specimens in order to support the hypothesis of decreasing reservoir (capacity-filtration) properties because of changes in the value and structure of the pore space. These experiments showed that the cyclic loading and unloading of arenaceous-silty rocks during long-term operation of underground gas storage facilities can significantly decrease the reservoir parameters of reservoirs created within worked out gas-and-gas condensate fields. Laboratory studies of model specimens corresponding to feldspar sandstone in their composition, porosity, and strength proved that porosity considerably decreases in such reservoirs at actually existing values of formation pressure. Tests of sand performed under conditions close to those existing during the development of hydrocarbon fields also showed that their permeability gradually decreases in the process of cyclic changes of effective pressure.  相似文献   
93.
The joint evolution of organic matter and silica in petroliferous sequences is considered in the terms of the laws of transformation of dispersion systems. The dispersion systems are transformed under conditions of low-temperature solid-phase processes accompanied by the silica phase transition and dehydration that favors the evolution of organic matter.  相似文献   
94.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   
95.
A survey was conducted in an 11-year recovery mobile dune (RMD11) and a 20-year recovery mobile dune (RMD20), in Horqin Sandy Land, Northern China, to determine plant distribution at the mobile dune scale and its relevance to soil properties and topographic features. The results showed that (1) vegetation cover and species number increased from dune top to bottom in the restoration process of mobile dune; (2) the average value of soil organic C, total N, pH, relative height of sampling site, very fine sand content and soil water contents (40−60 and 60−80 cm) of RMD11 were less than that of RMD20, respectively, and there were significant differences (P < 0.05) between the two dunes; (3) soil resources were redistributed by shrub restoration and relative height of sampling site on dune. The distribution of sand pioneer plant, Agriophyllum squarrosum, was positively related to the relative height of sampling site and soil water content, while that of other herbaceous plants was positively related to soil nutrients in the restoration process of mobile dune. These results suggest that at mobile dune scale, plant distributions are determined by a combination of soil properties and topographic feature. Much effort should be made to preserve the interdune lowland and to improve the level of soil nutrients on mobile dune.  相似文献   
96.
Occurrence and evolution of the Xiaotangshan hot spring in Beijing, China   总被引:1,自引:0,他引:1  
Thermal groundwater occurs in bedrock aquifers consisting of the dolomite of the Wumishan Group of the Jixianin System and the Cambrian carbonate in the Xiaotangshan geothermal field near the northern margin of the North China Plain, China. The hot water in the geothermal field of basin-type discharges partly in the form of the Xiaotangshan hot spring under natural conditions. The hot water has TDS of less than 600 mg/L and is of Na·Ca-HCO3 type. The geothermal water receives recharge from precipitation in the mountain area with elevation of about 500 m above sea level to the north of the spring. Thermal groundwater flows slowly south and southeast through a deep circulation with a residence time of 224 years estimated with the Ra–Rn method. The Xiaotangshan hot spring dried up in the middle of the 1980s owing to the increasing withdrawal of the hot water in the geothermal field in the past decades. The water level of the geothermal system still falls continually at an annual average rate of about 2 m, although water temperature changes very little, indicating that the recharge of such a geothermal system of basin-type is limited. Over-exploitation has a dramatic impact on the geothermal system, and reduction in exploitation and reinjection are required for the sustainable usage of the hot water.  相似文献   
97.
Many cities around the world are developed at alluvial fans. With economic and industrial development and increase in population, quality and quantity of groundwater are often damaged by over-exploitation in these areas. In order to realistically assess these groundwater resources and their sustainability, it is vital to understand the recharge sources and hydrogeochemical evolution of groundwater in alluvial fans. In March 2006, groundwater and surface water were sampled for major element analysis and stable isotope (oxygen-18 and deuterium) compositions in Xinxiang, which is located at a complex alluvial fan system composed of a mountainous area, Taihang Mt. alluvial fan and Yellow River alluvial fan. In the Taihang mountainous area, the groundwater was recharged by precipitation and was characterized by Ca–HCO3 type water with depleted δ18O and δD (mean value of −8.8‰ δ18O). Along the flow path from the mountainous area to Taihang Mt. alluvial fan, the groundwater became geochemically complex (Ca–Na–Mg–HCO3–Cl–SO4 type), and heavier δ18O and δD were observed (around −8‰ δ18O). Before the surface water with mean δ18O of −8.7‰ recharged to groundwater, it underwent isotopic enrichment in Taihang Mt. alluvial fan. Chemical mixture and ion exchange are expected to be responsible for the chemical evolution of groundwater in Yellow River alluvial fan. Transferred water from the Yellow River is the main source of the groundwater in the Yellow River alluvial fan in the south of the study area, and stable isotopic compositions of the groundwater (mean value of −8.8‰ δ18O) were similar to those of transferred water (−8.9‰), increasing from the southern boundary of the study area to the distal end of the fan. The groundwater underwent chemical evolution from Ca–HCO3, Na–HCO3, to Na–SO4. A conceptual model, integrating stiff diagrams, is used to describe the spatial variation of recharge sources, chemical evolution, and groundwater flow paths in the complex alluvial fan aquifer system.  相似文献   
98.
The Qinghai–Tibet Highway and Railway (the Corridor) across the Qinghai–Tibet Plateau traverses 670 km of permafrost and seasonally frozen-ground in the interior of the Plateau, which is sensitive to climatic and anthropogenic environmental changes. The frozen-ground conditions for engineering geology along the Corridor is complicated by the variability in the near-surface lithology, and the mosaic presence of warm permafrost and talik in a periglacial environment. Differential settlement is the major frost-effect problem encountered over permafrost areas. The traditional classification of frozen ground based on the areal distribution of permafrost is too generalized for engineering purposes and a more refined classification is necessary for engineering design and construction. A proposed classification of 51 zones, sub-zones, and sections of frozen ground has been widely adopted for the design and construction of foundations in the portion of the Corridor studied. The mean annual ground temperature (MAGT), near-surface soil types and moisture content, and active faults and topography are most commonly the primary controlling factors in this classification. However, other factors, such as local microreliefs, drainage conditions, and snow and vegetation covers also exert important influences on the features of frozen ground. About 60% of the total length of the Corridor studied possesses reasonably good frozen-ground conditions, which do not need special mitigative measures for frost hazards. However, other sections, such as warm and ice-rich or -saturated permafrost, particularly in the sections in wetlands, ground improvement measures such as elevated land bridges and passive or proactive cooling techniques need to be applied to ensure the long-term stability of thermally unstable, thick permafrost subsoils, and/or refill with non-frost-susceptible soils. Due to the long-history of the construction and management of the Corridor by various government departments, adverse impacts of construction and operation on the permafrost environment have been resulted. It is recommended that an integrated, executable plan for the routing of major construction projects within this transportation corridor be established and long-term monitoring networks installed for evaluating and mitigating the impact from anthropogenic and climatic changes in frozen-ground conditions.  相似文献   
99.
Experiments at 6.0–7.1 GPa and 1500–1700°C were carried out to explore the boundary conditions of diamond nucleation and growth in pyrrhotite-carbon melt-solutions. Pyrrhotite is one of the main sulfide minerals of the pyrrhotite-pentlandite-chalcopyrite assemblage of mantle rocks and primary inclusions in diamond. Solutions of carbon in sulfide melts oversaturated with respect to diamond at the expense of the dissolution of starting graphite (thermodynamically unstable phase) are formed owing to the difference between the solubilities of graphite and diamond, which increases under the influence of temperature gradients in experimental samples. We determined the fields of carbon solutions in pyrrhotite melt showing labile and metastable oversaturation with respect to diamond, which correspond to the spontaneous nucleation of the diamond phase and diamond growth on seeds, respectively. The linear growth rate of diamond in sulfide-carbon melts is rather high (on average, 10 μ/min during the first 1–2 min from the onset of spontaneous crystallization). The nucleation density is estimated as 180 grains per cubic centimeter. Diamonds crystallized from sulfide melts show octahedral and spinel twin shapes. Diamond polycrystals were synthesized for the first time from a sulfide medium as intergrowths of skeletal (edge) or “cryptocrystalline” microdiamonds, from 1 to 100 μm in size, their spinel twins and, occasionally, polysynthetic (star-shaped) twins. During diamond growth from sulfidecarbon melts on smooth faces of cuboctahedral diamond seeds synthesized in metal systems, smooth-faced layer-by-layer step-like growth was observed on their octahedral (111) faces, whereas growth on the (100) cubic faces produced rough-surfaced layers of intergrown micropyramids, whose axes were oriented normal to the (100) face. The obtained experimental results were applied to the problem of diamond genesis under the conditions of the Earth’s mantle in the framework of the model of carbonate-silicate parental melts with blebs of immiscible sulfide melts.  相似文献   
100.
This paper reports the results of a study of the composition of mica (biotite) crystallizing in the system of phonolite melt-Cl- and F-bearing aqueous fluid at T ~ 850°C, P = 200 MPa, and \(f_{O_2 } \) = Ni-NiO, as well as data on F and Cl partitioning between coexisting phases. It was established that Cl content in mica is significantly lower than in phonolite melt and, especially, in fluid. Fluorine shows a different behavior in this system: its content in mica is always higher than in phonolite melt but lower than in fluid. The mica-melt partition coefficients of Cl and F also behave differently. The Cl partition coefficient gradually increases from 0.17 to 0.33 with increasing Cl content in the system, whereas the partition coefficient of F sharply decreases from 3.0 to 1.0 with increasing total F content. The apparent partition coefficients of F between biotite and groundmass (melt) in various magmatic rocks are usually significantly higher than the experimental values. It was supposed that the higher Bt/glassDF values in natural samples could be related to the influence of later oxidation reactions, reequilibration of biotite at continuously decreasing \(f_{H_2 O} \)/f HF ratio, and an increase in this coefficients with decreasing total F content in the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号