首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29524篇
  免费   5605篇
  国内免费   7351篇
测绘学   1685篇
大气科学   6519篇
地球物理   7739篇
地质学   14927篇
海洋学   3339篇
天文学   1436篇
综合类   3320篇
自然地理   3515篇
  2024年   88篇
  2023年   421篇
  2022年   1237篇
  2021年   1390篇
  2020年   1175篇
  2019年   1340篇
  2018年   1645篇
  2017年   1455篇
  2016年   1757篇
  2015年   1435篇
  2014年   1793篇
  2013年   1738篇
  2012年   1629篇
  2011年   1654篇
  2010年   1761篇
  2009年   1758篇
  2008年   1582篇
  2007年   1522篇
  2006年   1270篇
  2005年   1099篇
  2004年   923篇
  2003年   951篇
  2002年   909篇
  2001年   847篇
  2000年   1031篇
  1999年   1474篇
  1998年   1163篇
  1997年   1165篇
  1996年   1032篇
  1995年   910篇
  1994年   857篇
  1993年   718篇
  1992年   568篇
  1991年   444篇
  1990年   338篇
  1989年   315篇
  1988年   277篇
  1987年   181篇
  1986年   149篇
  1985年   107篇
  1984年   70篇
  1983年   63篇
  1982年   69篇
  1981年   55篇
  1980年   28篇
  1979年   31篇
  1978年   10篇
  1977年   6篇
  1976年   7篇
  1958年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
Unconsolidated sand, gravel and clay deposits near Beihai and in the Leizhou Peninsula in southern China form an unconfined aquifer, aquitard and a confined aquifer. Water and soil samples were collected from the two aquifers in the coastal Beihai area for the determination of chemical compositions, minerals and soluble ions. Hydrogeochemical modeling of three flow paths through the aquitard are carried out using PHREEQC to determine water–rock interactions along the flow paths. The results indicate that the dissolution of anorthite, fluorite, halite, rhodochrosite and CO2, and precipitation of potash feldspar and kaolinite may be occurring when groundwater leaks through the aquitard from the unconfined aquifer to the confined aquifer. Cation exchanges between Na and Ca can also happen along the flow paths.  相似文献   
132.
The Hong’an area (western Dabie Mountains) is the westernmost terrane in the Qinling-Dabie-Sulu orogen that preserves UHP eclogites. The ages of the UHP metamorphism have not been well constrained, and thus hinder our understanding of the tectonic evolution of this area. LA-ICPMS U–Pb age, trace element and Hf isotope compositions of zircons of a granitic gneiss and an eclogite from the Xinxian UHP unit in the Hong’an area were analyzed to constrain the age of the UHP metamorphism. Most zircons are unzoned or show sector zoning. They have low trace element concentrations, without significant negative Eu anomalies. These metamorphic zircons can be further subdivided into two groups according to their U–Pb ages, and trace element and Lu–Hf isotope compositions. One group with an average age of 239 ± 2 Ma show relatively high and variable HREE contents (527 ≥ LuN ≥ 14) and 176Lu/177Hf ratios (0.00008–0.000931), indicating their growth prior to a great deal of garnet growth in the late stage of continental subduction. The other group yields an average age of 227 ± 2 Ma, and shows consistent low HREE contents and 176Lu/177Hf ratios, suggesting their growth with concurrent garnet crystallization and/or recrystallization. These two groups of age are taken as recording the time of prograde HP to UHP and retrograde UHP–HP stages, respectively. A few cores have high Th/U ratios, high trace element contents, and a clear negative Eu anomaly. These features support a magmatic origin of these zircon cores. The upper intercept ages of 771 ± 86 and 752 ± 70 Ma for the granitic gneiss and eclogite, respectively, indicate that their protoliths probably formed as a bimodal suite in rifting zones in the northern margin of the Yangtze Block. Young Hf model ages (T DM1) of magmatic cores indicate juvenile (mantle-derived) materials were involved in their protolith formation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
133.
The ages of subcontinental lithospheric mantle beneath the North China and South China cratons are less well-constrained than the overlying crust. We report Re–Os isotope systematics of mantle xenoliths entrained in Paleozoic kimberlites and Mesozoic basalts from eastern China. Peridotite xenoliths from the Fuxian and Mengyin Paleozoic diamondiferous kimberlites in the North China Craton give Archean Re depletion ages of 2.6–3.2 Ga and melt depletion ages of 2.9–3.4 Ga. No obvious differences in Re and Os abundances, Os isotopic ratios and model ages are observed between spinel-facies and garnet-facies peridotites from both kimberlite localities. The Re–Os isotopic data, together with the PGE concentrations, demonstrate that beneath the Archean continental crust of the eastern North China Craton, Archean lithospheric mantle of spinel- to diamond-facies existed without apparent compositional stratification during the Paleozoic. The Mesozoic and Cenozoic basalt-borne peridotite and pyroxenite xenoliths, on the other hand, show geochemical features indicating metasomatic enrichment, along with a large range of the Re–Os isotopic model ages from Proterozoic to Phanerozoic. These features indicate that lithospheric transformation or refertilization through melt-peridotite interaction could be the primary mechanism for compositional changes during the Phanerozoic, rather than delamination or thermal-mechanical erosion, despite the potential of these latter processes to play an important role for the loss of garnet-facies mantle. A fresh garnet lherzolite xenolith from the Yangtze Block has a Re depletion age of ∼1.04 Ga, much younger than overlying Archean crustal rocks but the same Re depletion ages as spinel lherzolite xenoliths from adjacent Mesozoic basalts, indicating Neoproterozoic resetting of the Re–Os system in the South China Craton.  相似文献   
134.
By using continuous helium flow during the crushing of calcite speleothem samples, we are able to recover liberated inclusion waters without isotopic fractionation. A paleotemperature record for the Jacklah Jill Cave locality, Vancouver Island, BC, was obtained from a 30-cm tall stalagmite that grew 10.3-6.3 Ka ago, using δ18O values of the crushed calcite and of the inclusion water as inferred from its δD. It is found that the locality experienced mean annual temperature variations up to 11 °C over a 4-Ka period in the early Holocene. At the beginning of the period, local temperature quickly increased from a minimum of ∼1 °C to around 10 °C, but this early climate optimum, about 3 °C warmer than today, only lasted for ∼1200 years. About 8.6 Ka ago, temperature had declined to ∼7 °C, approximately the same as the modern cave temperature. Since then, the study area has experienced only minor temperature fluctuations, but there was a brief fall to ∼4 °C at around 7 Ka ago, which might be caused by a short lived expansion of local alpine glaciers. The long-term T-dependence of δD was 1.47‰/°C, identical to the value in modern precipitation.  相似文献   
135.
A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from −2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo (αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ30Si value from roots to stem, including larger ratio of dissolved H4SiO4 to precipitated SiO2 in roots than in stem. There is a positive correlation between the δ30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor (αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO2 contents and δ30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.  相似文献   
136.
Hydrogen sulfide (H2S) is known to catalyze thermochemical sulfate reduction (TSR) by hydrocarbons (HC), but the reaction mechanism remains unclear. To understand the mechanism of this catalytic reaction, a series of isothermal gold-tube hydrous pyrolysis experiments were conducted at 330 °C for 24 h under a constant confining pressure of 24.1 MPa. The reactants used were saturated HC (sulfur-free) and CaSO4 in the presence of variable H2S partial pressures at three different pH conditions. The experimental results showed that the in-situ pH of the aqueous solution (herein, in-situ pH refers to the calculated pH of aqueous solution under the experimental conditions) can significantly affect the rate of the TSR reaction. A substantial increase in the TSR reaction rate was recorded with a decrease in the in-situ pH value of the aqueous solution involved. A positive correlation between the rate of TSR and the initial partial pressure of H2S occurred under acidic conditions (at pH ∼3-3.5). However, sulfate reduction at pH ∼5.0 was undetectable even at high initial H2S concentrations. To investigate whether the reaction of H2S(aq) and occurs at pH ∼3, an additional series of isothermal hydrous pyrolysis experiments was conducted with CaSO4 and variable H2S partial pressures in the absence of HC at the same experimental temperature and pressure conditions. CaSO4 reduction was not measurable in the absence of paraffin even with high H2S pressure and acidic conditions. These experimental observations indicate that the formation of organosulfur intermediates from H2S reacting with hydrocarbons may play a significant role in sulfate reduction under our experimental conditions rather than the formation of elemental sulfur from H2S reacting with sulfate as has been suggested previously (Toland W. G. (1960) Oxidation of organic compounds with aqueous sulphate. J. Am. Chem. Soc.82, 1911-1916).Quantification of labile organosulfur compounds (LSC), such as thiols and sulfides, was performed on the products of the reaction of H2S and HC from a series of gold-tube non-isothermal hydrous pyrolysis experiments conducted at about pH 3 from 300 to 370 °C and a 0.1-°C/h heating rate. Incorporation of sulfur into HC resulted in an appreciable amount of thiol and sulfide formation. The rate of LSC formation positively correlated with the initial H2S pressure. Thus, we propose that the LSC produced from H2S reaction with HC are most likely the reactive intermediates for H2S initiation of sulfate reduction. We further propose a three-step reaction scheme of sulfate reduction by HC under reservoir conditions, and discuss the geological implications of our experimental findings with regard to the effect of formation water and oil chemistry, in particular LSC content.  相似文献   
137.
个旧矿区遥感异常信息解译及找矿远景分析   总被引:3,自引:0,他引:3  
文章以TM多光谱遥感数据为基本信息源,从实际地质情况出发,采用计算机识别和人工判读相结合,对区内的线形、环形构造进行了解译.应用比值 主成分分析的方法对区内热液弱蚀变信息进行了提取.在此基础上,综合利用已知矿床的分布以及遥感构造信息、遥感蚀变晕信息,结合已有的物化探资料,分析出4个找矿远景区.  相似文献   
138.
实验研究不同盐离子对水分子拉曼效应的影响   总被引:3,自引:0,他引:3  
对流体包裹体中常见的几种盐水溶液进行了拉曼光谱分析.采用了频移参数描述水分子拉曼峰的形变强度,并讨论了频移参数与盐度之间的关系.实验分析结果表明,盐度越大,频移参数越大,水分子拉曼峰形变越大.对频移参数曲线斜率分析显示,盐类对水分子拉曼峰偏移程度影响的强弱顺序为NaCl>Na2SO4>NaHCO3>Na2CO3.讨论了不同阳离子和阴离子对水伸缩振动拉曼峰的影响,结果表明,高价阳离子的影响明显高于低价阳离子;而阴离子对水拉曼峰影响的强弱顺序初步确定为Cl-≈SO2-4->HCO-3>CO2-3≈NO-3.  相似文献   
139.
通过对塔里木盆地库车坳陷南天山山前带克孜勒努尔沟与依奇克里克野外露头沉积相的精细研究,结合山前带大量地震剖面分析与迪那201井、东秋5井等多口钻井测井相和岩心精细描述,将古近系库姆格列木群划分为2个层序。层序2低位域以冲积扇沉积为主,自湖侵体系域始,研究区广泛发育退积与进积型扇三角洲沉积。库姆格列木群层序2湖侵体系域内扇三角洲平原砂体以正韵律沉积为主,砂砾岩占地层厚度的(68.4~87)%;扇三角洲前缘砂体正、反韵律均有分布,砂砾岩占地层的百分比有所降低,为(55.2~77)%。高位体系域内主要发育以反韵律砂体为主的扇三角洲前缘沉积。古近系苏维依组只发育一个层序,其低位体系域的砂体为扇三角洲平原与前缘的分流河道砂体,湖侵体系域内扇三角洲前缘砂体正、反韵律均发育,高位体系域内主要发育扇三角洲前缘沉积,以反韵律砂体为主,正韵律砂体相对较少。对比苏维依组不同体系域内砂体储集性,湖侵域内砂体优于高位域内砂体。扇三角洲沉积体中有利储集砂体首选为湖侵体系域内的扇三角洲前缘水下分流河道和河口坝砂体,次之为低位域扇三角洲前缘(平原)分流河道砂体,最后是高位域内的河口坝及席状砂沉积砂体。特别要指出:低位体系域或者湖侵体系域底部发育的扇三角洲前缘(平原)分流河道砂体(底砂砾岩)被快速湖侵的较厚的暗色泥岩所覆盖,可形成较好储集场所。  相似文献   
140.
库车前陆褶皱冲断带自北向南可分为基底冲断带、箱状背斜带、梳状背斜带和挠曲褶皱带,东西方向上可分为西段、中段和东段。本文分段叙述了各变形带的变形特征,指出东段箱状背斜带不发育,秋里塔格山脉(构造带)东延未进入东段,因而总体看自西向东变形强度减弱,地形上趋于夷平。该冲断带的形成经历了两次重大的冲断活动,分别发生在中新世和早(-中)更新世;相应地,该带可分为南、北两个"盆""山"亚系统,两者在地层记录、变形期次和变形机制上尚有若干差异。库车前陆褶皱冲断带的发育,除了受南天山的冲断和向南扩展引起的近南北向挤压应力场控制外,还受到基底断裂在新生代的活化和膏盐层底辟的制约,前者以近北西向的构造变换带及其共轭发育的近北东向断层最为重要,后者既控制了秋里塔格山脉的形成(主要受垂直的挤压应力场作用),也在库车前陆褶皱冲断带东西方向的变形分段中起了重要作用。文章还讨论了变形与地貌发育的关系和在油气勘探中的指导意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号