首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   5篇
大气科学   5篇
地球物理   15篇
地质学   36篇
海洋学   3篇
天文学   9篇
自然地理   4篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1995年   1篇
  1991年   1篇
  1988年   2篇
  1985年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
21.
It is often challenging to determine the appropriate level of spatial model forcing and model distribution in conceptual rainfall‐runoff modelling. This paper compares the value of incorporating both spatially distributed forcing data and spatially distributed model conceptualisations based on landscape heterogeneity, applied to the Ourthe catchment in Belgium. Distributed forcing data were used to create a spatial distribution of model states. Eight different configurations were tested: a lumped and distributed model structure, each with four levels of model state distribution. The results show that in the study catchment the distributed model structure can in general better reproduce the dynamics of the hydrograph, and furthermore, that the differences in performance and consistency between calibration and validation are smallest for the distributed model structure with distributed model states. For the Ourthe catchment, it can be concluded that the positive effect of incorporating a distributed model structure is larger than that of incorporating distributed model states. Distribution of model structure increases both model performance and consistency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
22.
23.
The Cetina River is a typical karst watercourse in the deep and well‐developed Dinaric karst. The total length of the Cetina River open streamflow from its spring to the mouth is about 105 km. Estimated mean annual rainfall is 1380 mm. The Cetina catchment is built of Triassic, Jurassic, and Cretaceous carbonate strata. The western part of the catchment by the Cetina River is referred to as the ‘direct’ or topographic catchment. It was defined based on surface morphologic forms, by connection between mountain chain peaks. This part of the catchment is almost entirely situated in the Republic of Croatia. The eastern part of the catchment is referred to as the ‘indirect’ catchment, and is mainly situated in Bosnia‐Herzegovina. Water from the ‘indirect’ catchment emerges from the western ‘direct’ catchment in numerous permanent and temporary karst springs. Since 1960, numerous hydrotechnical works have been carried out on the Cetina River and within its catchment. Five hydroelectric power plants (HEPPs), five reservoirs, and three long tunnels and pipelines have been built. Their operation has significantly altered the natural hydrological regime. The Cetina River is divided into two hydrological reaches. In the 65 km upstream, the hydrological regime was redistributed within the year: low flows had increased and high flows had decreased, although the mean annual discharge remained the same. Part of the Cetina watercourse downstream from the Pran?evi?i Reservoir lost the majority of its flow. The mean annual discharges dropped from 100 m3 s?1 to less than 10 m3 s?1 because of the Zaku?ac HEPP development. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
24.
A Paleoarchean impact spherule‐bearing interval of the 763 m long International Continental Scientific Drilling Program (ICDP) drill core BARB5 from the lower Mapepe Formation of the Fig Tree Group, Barberton Mountain Land (South Africa) was investigated using nondestructive analytical techniques. The results of visual observation, infrared (IR) spectroscopic imaging, and micro‐X‐ray fluorescence (μXRF) of drill cores are presented. Petrographic and sedimentary features, as well as major and trace element compositions of lithologies from the micrometer to kilometer‐scale, assisted in the localization and characterization of eight spherule‐bearing intervals between 512.6 and 510.5 m depth. The spherule layers occur in a strongly deformed section between 517 and 503 m, and the rocks in the core above and below are clearly less disturbed. The μXRF element maps show that spherule layers have similar petrographic and geochemical characteristics but differences in (1) sorting of two types of spherules and (2) occurrence of primary minerals (Ni‐Cr spinel and zircon). We favor a single impact scenario followed by postimpact reworking, and subsequent alteration. The spherule layers are Al2O3‐rich and can be distinguished from the Al2O3‐poor marine sediments by distinct Al‐OH absorption features in the short wave infrared (SWIR) region of the electromagnetic spectrum. Infrared images can cover tens to hundreds of square meters of lithologies and, thus, may be used to search for Al‐OH‐rich spherule layers in Al2O3‐poor sediments, such as Eoarchean metasediments, where the textural characteristics of the spherule layers are obscured by metamorphism.  相似文献   
25.
Air quality monitoring was performed at the measuring sites in the urban-industrial and suburban zone during the period 2005–2007 in Bor (Serbia). Arsenic, lead, cadmium, copper and sulphur dioxide are predominantly of industrial origin as a result of copper production in the study area. The smelter, which is a part of the Mining-Metallurgical Complex Bor, is the major pollution source. As and SO2 are the pollutants which pose the biggest threat for the inhabitants of the Bor area, since the measured concentrations exceed the proposed limit values. The obtained concentrations showed that the endangered areas are in close vicinity of the smelter, as well as in the directions of the prevailing winds. By grouping these pollutants into separate clusters, the results of cluster analysis confirmed high loads of As and SO2 in the air. The results of principal component analysis showed that copper production has major influence on air pollution.  相似文献   
26.
This study represents air quality data of SO2 and As concentrations around the mining–metallurgical complex Bor (Serbia) from 1994 to 2008. Daily and annual SO2 concentrations greatly exceed current air quality standards in the studied area. The “hot spot” with the highest SO2 and As annual concentrations during 15 years was the urban-industrial area (the town core). Daily SO2 concentrations and meteorological parameters during the period from 2005 to 2008 were statistically analysed to develop suitable prediction equations for daily SO2 concentrations. Anode copper production is an important but not the only factor that has influence on SO2 concentrations. By stepwise multiple linear regression analysis, it was determined that daily SO2 concentrations are most influenced by maximum wind gust, relative humidity and air temperature at all the measuring sites. The prediction equations of daily SO2 concentrations represent a good model with regression coefficients from 0.854 to 0.926 at all the measuring sites. Correlation analysis showed that eastern and western winds increase SO2 concentrations, thus increasing the health risk of the inhabitants in the study area.  相似文献   
27.
The surface heat flux of a planet is an important parameter to characterize its internal activity and to determine its thermal evolution. Here we report on a new method to constrain the surface heat flux of Mars during the Hesperian. For this, we explore the consequences for the martian surface heat flux from a recently presented new hypothesis for the formation of Aram Chaos (Zegers, T.E., Oosthoek, J.H.P., Rossi, A.P., Blom, J.K., Schumacher, S. [2010]. Earth Planet. Sci. Lett. 297, 496-504. doi:10.1016/j.epsl.2010.06.049.). In this hypothesis the chaotic terrain is thought to have formed by melting of a buried ice sheet. The slow sedimentation and burial of the ice sheet led to an increased thermal insulation of the ice and subsequently to a temperature increase high enough to trigger melting and the formation of the subsurface lake. As these processes highly depend on the thermal properties of the subsurface and especially on the surface heat flux, it is possible to constrain the latter by using numerical simulations. Based on the hypothesis for the formation of Aram Chaos, we conducted an extensive parameter study to determine the parameter settings leading to sufficient melting of the buried ice sheet. We find that the surface heat flux in the Aram Chaos region during the Hesperian was most likely between 20 and 45 mW m−2 with a possible maximum value of up to 60 mW m−2.  相似文献   
28.
Abstract– The processes leading to formation of sometimes massive occurrences of pseudotachylitic breccia (PTB) in impact structures have been strongly debated for decades. Variably an origin of these pseudotachylite (friction melt)‐like breccias by (1) shearing (friction melting); (2) so‐called shock compression melting (with or without a shear component) immediately after shock propagation through the target; (3) decompression melting related to rapid uplift of crustal material due to central uplift formation; (4) combinations of these processes; or (5) intrusion of allochthonous impact melt from a coherent melt body has been advocated. Our investigations of these enigmatic breccias involve detailed multidisciplinary analysis of millimeter‐ to meter‐sized occurrences from the type location, the Vredefort Dome. This complex Archean to early Proterozoic terrane constitutes the central uplift of the originally >250 km diameter Vredefort impact structure in South Africa. Previously, results of microstructural and microchemical investigations have indicated that formation of very small veinlets involved local melting, likely during the early shock compression phase. However, for larger veins and networks it was so far not possible to isolate a specific melt‐forming mechanism. Macroscopic to microscopic evidence for friction melting is very limited, and so far chemical results have not directly supported PTB generation by intrusion of impact melt. On the other hand, evidence for filling of dilational sites with melt is abundant. Herein, we present a new approach to the mysterium of PTB formation based on volumetric melt breccia calculations. The foundation for this is the detailed analysis of a 1.5 × 3 × 0.04 m polished granite slab from a dimension‐stone quarry in the core of the Vredefort Dome. This slab contains a 37.5 dm3 breccia zone. The pure melt volume in 0.1 m3 PTB‐bearing granitic target rock outside of the several‐decimeter‐wide breccia zone in the granite slab was estimated at 5.2 dm3. This amount can be divided into 4.6 dm3 melt (88%), for which we have evidenced a limited material transport (at maximum, ≈20 cm) and 0.6 dm3 melt (12%) with, at most, grain‐scale material transport, which we consider in situ formed shock melt. The breccia zone itself contains about 10 dm3 of matrix (melt). Assuming melt exchange over 20 cm at the slab surface, between breccia zone and surrounding melt‐bearing host rock volume, the outer melt volume is calculated to contain the same amount of melt as contained by the massive breccia zone. Meso‐ and microscopic observations indicate melt transport is more prominent from larger into smaller melt occurrences. Thus, melt of the breccia zone could have provided the melt fill for all the small‐scale PTB veins in the surrounding target rock. Extrapolating this melt capacity calculation for 1 m3 PTB‐bearing host rock shows that a host rock volume of this dimension is able to take up some 52 dm3 melt. Scaling up 1000‐fold to the outcrop scale reveals that exchange between a host rock volume of 2 m radius around a 37 m3 breccia zone could involve some 10 m3 melt. These results demonstrate that large melt volumes (i.e., large breccia zones) can be derived, in principle, from local reservoirs. However, strong decompression would have to apply in order to exchange these considerable melt volumes, which would only be realistic during the decompression phase of impact cratering upon central uplift formation, or locally where compressive regimes acted during the subsequent down‐ and outward collapse of the central uplift.  相似文献   
29.
The present-day clay mineral distribution in the southeastern Levantine Sea and its borderlands reveals a complex pattern of different sources and distribution paths. Smectite dominates the suspended load of the Nile River and of rivers in the Near East. Illite sources are dust-bearing winds from the Sahara and southwestern Europe. Kaolinite is prevalent in rivers of the Sinai, in Egyptian wadis, and in Saharan dust. A high-resolution sediment core from the southeastern Levantine Sea spanning the last 27 ka shows that all these sources contributed during the late Quaternary and that the Nile River played a very important role in the supply of clay. Nile influence was reduced during the glacial period but was higher during the African Humid Period. In contrast to the sharp beginning and end of the African Humid Period recorded in West African records (15 and 5.5 ka), our data show a more transitional pattern and slightly lower Nile River discharge rates not starting until 4 ka. The similarity of the smectite concentrations with fluctuations in sea-surface temperatures of the tropical western Indian Ocean indicates a close relationship between the Indian Ocean climate system and the discharge of the Nile River.  相似文献   
30.
Karst aquifers in semi-arid regions are particularly threatened by surface contamination, especially during winter seasons when extremely variable rainfall of high intensities prevails. An additional challenge is posed when managed recharge of storm water is applied, since karst aquifers display a high spatial variability of hydraulic properties. In these cases, adapted protection concepts are required to address the interaction of surface water and groundwater. In this study a combined protection approach for the surface catchment of the managed aquifer recharge site at the Wala reservoir in Jordan and the downstream Hidan wellfield, which are both subject to frequent bacteriological contamination, is developed. The variability of groundwater quality was evaluated by correlating contamination events to rainfall, and to recharge from the reservoir. Both trigger increased wadi flow downstream of the reservoir by surface runoff generation and groundwater seepage, respectively. A tracer test verified the major pathway of the surface flow into the underground by infiltrating from pools along Wadi Wala. An intrinsic karst vulnerability and risk map was adapted to the regional characteristics and developed to account for the catchment separation by the Wala Dam and the interaction of surface water and groundwater. Implementation of the proposed protection zones for the wellfield and the reservoir is highly recommended, since the results suggest an extreme contamination risk resulting from livestock farming, arable agriculture and human occupation along the wadi. The applied methods can be transferred to other managed aquifer recharge sites in similar karstic environments of semi-arid regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号