首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   631篇
  免费   25篇
  国内免费   7篇
测绘学   3篇
大气科学   17篇
地球物理   131篇
地质学   157篇
海洋学   143篇
天文学   155篇
综合类   10篇
自然地理   47篇
  2021年   5篇
  2020年   5篇
  2019年   15篇
  2018年   8篇
  2017年   22篇
  2016年   13篇
  2015年   9篇
  2014年   29篇
  2013年   24篇
  2012年   14篇
  2011年   23篇
  2010年   22篇
  2009年   28篇
  2008年   26篇
  2007年   34篇
  2006年   32篇
  2005年   30篇
  2004年   40篇
  2003年   17篇
  2002年   18篇
  2001年   27篇
  2000年   20篇
  1999年   12篇
  1998年   15篇
  1997年   15篇
  1996年   10篇
  1995年   5篇
  1994年   5篇
  1993年   12篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   8篇
  1988年   5篇
  1987年   4篇
  1986年   8篇
  1985年   6篇
  1984年   7篇
  1983年   5篇
  1982年   4篇
  1981年   8篇
  1980年   7篇
  1979年   7篇
  1977年   6篇
  1976年   5篇
  1975年   4篇
  1974年   3篇
  1972年   3篇
  1971年   6篇
  1960年   2篇
排序方式: 共有663条查询结果,搜索用时 156 毫秒
101.
102.
103.
Meso- or submeso-scale features of the Antarctic sea ice are investigated using the MOS-1/1b MESSR Images (spatial resolution of approximately 50 m) received at Syowa Station. Particular attention is paid to the ice bands and ice streamers in coastal polynyas. In the Antarctic Ocean, ice bands can be often seen not only at the ice edge but also in the ice interior zone throughout the year and they extend for hundreds of kilometers in the latitudinal direction. It is found that the width and spacing of ice bands tend to decrease from winter to summer. The width of ice band is about 2–6 km in August and September, and 0.1–0.7 km in December. The spacing of ice bands is about 3–10 km in August and September, and 0.1–2 km in December. In coastal polynyas, ice streamers, which are composed of new ice, are sometimes observed. In general, the row of the streamers is spaced at 0.5–2 km with a width of 0.1–1.0 km.  相似文献   
104.
Current Nature of the Kuroshio in the Vicinity of the Kii Peninsula   总被引:1,自引:0,他引:1  
The Kuroshio flows very close to Cape Shionomisaki when it takes a straight path. The detailed observations of the Kuroshio were made both on board the R/V Seisui-maru of Mie University and on board the R/V Wakayama of the Wakayama Prefectural Fisheries Experimental Station on June 11–14, 1996. It was confirmed that the current zone of the Kuroshio touches the coast and bottom slope just off Cape Shionomiaki, and that the coastal water to the east of the cape was completely separated from that to the west. The relatively high sea level difference between Kushimoto and Uragami could be caused by this separation of the coastal waters when the Kuroshio takes a straight path. This flow is rather curious, as the geostrophic flow, which has a barotropic nature and touches the bottom, would be constrained to follow bottom contours due to the vorticity conservation law. The reason why the Kuroshio leaves the bottom slope to the east of Cape Shionomisaki is attributed to the high curvature of the bottom contours there: if the current were to follow the contours, the centrifugal term in the equation of motion would become large and comparablee to the Coriolis (or pressure gradient) term, and the geostrophic balance would be destroyed. This creates a current-shadow zone just to the east of the cape. As the reason why the current zone of the Kuroshio intrudes into the coastal region to the west of the cape, it is suggested that the Kii Bifurcation Current off the southwest coast of the Kii Peninsula, which is usually found when the Kuroshio takes the straight path, has the effect of drawing the Kuroshio water into the coastal region. The sea level difference between Kushimoto and Uragami is often used to monitor the flow pattern of the Kuroshio near the Kii Peninsula. It should be noted that Uragami is located in the current shadow zone, while Kushimoto lies in the region where the offshore Kuroshio water intrudes into the coastal region. The resulting large sea level difference indicates that the Kuroshio is flowing along the straight path.  相似文献   
105.
Interdecadal variations of El Niño/Southern Oscillation (ENSO) signals and annual cycles appearing in the sea surface temperature (SST) and zonal wind in the equatorial Pacific during 1950–1997 are studied by wavelet, empirical orthogonal function (EOF) and singular value decomposition (SVD) analyses. The typical timescale of ENSO is estimated to be about 40 months before the late 1970s and 48–52 months after that; the timescale increased by about 10 months. The spatial pattern of the ENSO signal appearing in SST also changed in the 1970s; before that, the area of strong signal spread over the extratropical regions, while it is confined near the equator after that. The center of the strongest signal shifted from the central and eastern equatorial Pacific to the South American coast at that time. These SST fluctuations near the equator are associated with fluctuations of zonal wiond, whose spatial pattern also shifted considerably eastward at that time. In the eastern equatorial Pacific, amplitudes of annual cycles of SST are weak in El Niño years and strong in La Niña years. This relation is not clear, however, in the 1980s and 1990s.  相似文献   
106.
The International Ocean Discovery Program Expedition 350 drilled between two Izu rear‐arc seamount chains at Site U1437 and recovered the first complete succession of rear‐arc rocks. The drilling reached 1806.5 m below seafloor. In situ hyaloclastites, which had erupted before the rear‐arc seamounts came into existence at this site, were recovered in the deepest part of the hole (~15–16 Ma). Here it is found that the composition of the oldest rocks recovered does not have rear‐arc seamount chain geochemical signatures, but instead shows affinities with volcanic front or some of the extensional zone basalts between the present volcanic front and the rear‐arc seamount chains. It is suggested that following the opening of the Shikoku back‐arc Basin, Site U1437 was a volcanic front or a rifting zone just behind the volcanic front, and was followed at ~ 9 Ma by the start of rear‐arc seamount chains volcanism. This geochemical change records variations in the subduction components with time, which might have followed eastward moving of hot fingers in the mantle wedge and deepening of the subducting slab below Site U1437 after the cessation of Shikoku back‐arc Basin opening.  相似文献   
107.
108.
A new method to evaluate the strength of rock mass structures is proposed and examined. The method is based on the collapse load analysis of elasto-perfectly plastic material along with the homogenization method, which enables the multi-scale analyses for heterogeneous media. The homogenization process replaces a rock mass with cracks by an equivalent continuum medium with macroscopic stiffness while the failure criterion for the rock mass is estimated in the localization process. It is shown that both the averaged stiffness and the macroscopic failure criterion of the discontinuous rock mass are numerically obtained via the finite element analyses. Thus, the failure strength of a rock mass structure is evaluated by the collapse load analysis in the form of Linear Programming with the macroscopic failure criterion. This is the first attempt to apply the homogenization method to the strength analysis of rock mass. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
109.
Phytoplankton primary production and its regulation by light and nutrient availability were investigated in the shallow, tropical coastal waters of Bandon Bay, Southern Thailand. The bay was meso‐eutrophicated and highly turbid, receiving river water discharge. Water column stratification was consistently weak during both rainy and dry seasons. Dissolved inorganic nitrogen (DIN) was higher off the river mouth than in the other regions, suggesting that river water discharge was a main source of DIN. By contrast, dissolved inorganic phosphorus (DIP) showed a significant negative correlation with total water depth, implying that regeneration around the sea floor was an important source of DIP. Surface DIN and DIP showed positive correlations with surface primary production (PP) and water column primary productivity (ΣPP*), respectively. The combined correlation and model analyses indicate that total water depth had an ambivalent influence on water column primary production (ΣPP); shallower water depth induced more active regeneration of nutrients, but it also caused higher turbidity and lower light availability as a result of enhanced resuspension of sediments. Furthermore, there was a vertical constraint for phytoplankton during the rainy season: total water depth tended to be shallower than euphotic zone depth. In conclusion, light limitation and vertical constraint owing to shallow water depth appear to be more important than nutrient limitation for water column primary production in Bandon Bay.  相似文献   
110.
A numerical simulation of Otsuchi Bay located on the northeast coast of the Honshu, the largest island of Japan, is conducted, using an ocean general circulation model (OGCM) with a nested-grid system in order to illustrate seasonal variability of the circulation in the bay. Through a year, an anticlockwise circulation is dominant in the bay, as observational studies have implied, although it is modified in the bay-mouth-half of the bay in winter. In addition, there is an intense outflow at the surface layer during spring to autumn, influenced by river water discharge. Intrusion of the Pacific water into the bay is influened by mean circulations, but it is also influenced by baroclinic tides from spring to autumn. Pacific water intrusions affected by baroclinic tides may have an impact on the environment in Otsuchi Bay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号