首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1437篇
  免费   64篇
  国内免费   17篇
测绘学   30篇
大气科学   164篇
地球物理   358篇
地质学   442篇
海洋学   127篇
天文学   260篇
综合类   1篇
自然地理   136篇
  2023年   7篇
  2022年   8篇
  2021年   24篇
  2020年   25篇
  2019年   21篇
  2018年   38篇
  2017年   35篇
  2016年   47篇
  2015年   32篇
  2014年   55篇
  2013年   70篇
  2012年   42篇
  2011年   82篇
  2010年   65篇
  2009年   90篇
  2008年   73篇
  2007年   67篇
  2006年   65篇
  2005年   61篇
  2004年   43篇
  2003年   67篇
  2002年   31篇
  2001年   30篇
  2000年   35篇
  1999年   24篇
  1998年   18篇
  1997年   18篇
  1996年   18篇
  1995年   16篇
  1994年   17篇
  1993年   18篇
  1992年   16篇
  1991年   14篇
  1990年   11篇
  1989年   8篇
  1988年   10篇
  1987年   13篇
  1986年   15篇
  1985年   22篇
  1984年   25篇
  1983年   25篇
  1982年   27篇
  1981年   12篇
  1980年   23篇
  1979年   14篇
  1978年   12篇
  1977年   6篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
排序方式: 共有1518条查询结果,搜索用时 296 毫秒
991.
Small‐scale variations in surface moisture content were measured on a fine‐grained beach using a Delta‐T Theta probe. The resulting data set was used to examine the implications of small‐scale variability for estimating aeolian transport potential. Surface moisture measurements were collected on a 40 cm × 40 cm grid at 10 cm intervals, providing a total of 25 measurements for each grid data set. A total of 44 grid data sets were obtained from a representative set of beach sub‐environments. Measured moisture contents ranged from about 0% (dry) to 25% (saturated), by weight. The moisture content range within a grid data set was found to vary from less than 1% to almost 15%. The magnitude of within‐grid variability varied consistently with the mean moisture content of the grid sets, following an approximately normal distribution. Both very wet and very dry grid data sets exhibited little internal variability in moisture content, while intermediate moisture contents were associated with higher levels of variability. Thus, at intermediate moisture contents it was apparent that some portions of the beach surface could be dry enough to allow aeolian transport (i.e. moisture content is below the critical threshold), while adjacent portions are too wet for transport to occur. To examine the implications of this finding, cumulative distribution functions were calculated to model the relative proportions of beach surface area expected to be above or below specified threshold moisture levels (4%, 7%, and 14%). It was found that the implicit inclusion of small‐scale variability in surface moisture levels typically resulted in changes of less than 1% in the beach area available for transport, suggesting that this parameter can be ignored at larger spatial scales. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
992.
Research on climate change impacts, vulnerability and adaptation, particularly projects aiming to contribute to practical adaptation initiatives, requires active involvement and collaboration with community members and local, regional and national organizations that use this research for policy-making. Arctic communities are already experiencing and adapting to environmental and socio-cultural changes, and researchers have a practical and ethical responsibility to engage with communities that are the focus of the research. This paper draws on the experiences of researchers working with communities across the Canadian Arctic, together with the expertise of Inuit organizations, Northern research institutes and community partners, to outline key considerations for effectively engaging Arctic communities in collaborative research. These considerations include: initiating early and ongoing communication with communities, and regional and national contacts; involving communities in research design and development; facilitating opportunities for local employment; and disseminating research findings. Examples of each consideration are drawn from climate change research conducted with communities in the Canadian Arctic.  相似文献   
993.
When coral reefs held in United States public trust are injured by incidents such as vessel groundings or oil spills, a natural resource damage assessment (NRDA) process may be conducted to quantify the resource service loss. Coral cover has been used as an indicator metric to represent lost services in habitat equivalency analyses for determination of compensatory restoration. Depending on the injury and habitat, however, lost services may be more comprehensively represented by alternative approaches such as composite metrics which incorporate other coral reef community characteristics, or a resource-scale approach utilizing size-frequency distributions of injured organisms. We describe the evolving state of practice for capturing coral reef ecosystem services within the natural resources damage assessment context, explore applications and limitations of current metrics, and suggest future directions that may increase the likelihood that NRDA metrics more fully address ecosystem services affected by an injury.  相似文献   
994.
995.
Using a coupled large‐eddy simulation–land surface model framework, the impact of two‐dimensional soil moisture heterogeneity on the cloudy boundary layer under varied free‐atmosphere stabilities is investigated. Specifically, the impacts of soil moisture heterogeneity length scale and heterogeneity in terms of soil moisture gradients on micrometeorological states, surface fluxes, boundary layer characteristics, and cloud development are examined. The results show that mesoscale circulations due to surface heterogeneity in soil moisture play an important role in transferring water vapour within the boundary layer and in regulating cloud distribution at the entrainment zone, which, in turn, provides feedbacks on boundary layer/surface energy budgets. The initial domain‐averaged soil moisture is identical for all homogenous and heterogeneous cases; however, the soil moisture heterogeneity in gradient and length scale between dry and wet regions has a significant impact on the estimates of near‐surface micrometeorological properties and surface fluxes, which further affect the boundary layer states and characteristics. Both liquid water potential temperature and liquid water mixing ratio increase with an increasing soil moisture gradient, whereas the amount of specific humidity decreases. Heterogeneity length scale and free atmosphere stability also amplify these impacts on the boundary layer structure and cloud formation. In a low atmospheric stability condition that potentially allows for a deeper boundary layer and a higher entrainment rate, cloud base height and cloud thickness significantly increase as the soil moisture gradient and length scale increase. Analysis to differentiate the influences of surface heterogeneity type (i.e. length scale vs gradient) shows that in general soil moisture gradient provides a larger impact than heterogeneity length scale, although the heterogeneity length scale is large enough to initiate circulation features responsible for differences in the coupled system between homogeneous and heterogeneous soil moisture cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
996.
997.
Quantifying snowmelt‐derived fluxes at the watershed scale within hillslope environments is critical for investigating local meadow scale groundwater dynamics in high elevation riparian ecosystems. In this article, we investigate the impact of snowmelt‐derived groundwater flux from the surrounding hillslopes on water table dynamics in Tuolumne Meadows, which is located in the Sierra Nevada Mountains of California, USA. Results show water levels within the meadow are controlled by a combination of fluxes at the hillslope boundaries, snowmelt within the meadow and changes in the stream stage. Observed water level fluctuations at the boundaries of the meadow show the hydrologic connection and subsequent disconnection between the hillslope and meadow aquifers. Timing of groundwater flux entering the meadow as a result of spring snowmelt can vary over 20 days based on the location, aspect, and local geology of the contributing area within the larger watershed. Identifying this temporal and spatial variability in flux entering the meadow is critical for simulating changes in water levels within the meadow. Model results can vary significantly based on the temporal and spatial scales at which watershed processes are linked to local processes within the meadow causing errors when boundary fluxes are lumped in time or space. Without a clear understanding of the surrounding hillslope hydrology, it is difficult to simulate groundwater dynamics within high elevation riparian ecosystems with the accuracy necessary for understanding ecosystem response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
998.
The spatial distribution of snow water equivalent (SWE) is a key variable in many regional‐scale land surface models. Currently, the assimilation of point‐scale snow sensor data into these models is commonly performed without consideration of the spatial representativeness of the point data with respect to the model grid‐scale SWE. To improve the understanding of the relationship between point‐scale snow measurements and surrounding areas, we characterized the spatial distribution of snow depth and SWE within 1‐, 4‐ and 16‐km2 grids surrounding 15 snow stations (snowpack telemetry and California snow sensors) in California, Colorado, Wyoming, Idaho and Oregon during the 2008 and 2009 snow seasons. More than 30 000 field observations of snowpack properties were used with binary regression tree models to relate SWE at the sensor site to the surrounding area SWE to evaluate the sensor representativeness of larger‐scale conditions. Unlike previous research, we did not find consistent high biases in snow sensor depth values as biases over all sites ranged from 74% overestimates to 77% underestimates. Of the 53 assessments, 27 surveys indicated snow station biases of less than 10% of the surrounding mean observed snow depth. Depth biases were largely dictated by the physiographic relationship between the snow sensor locations and the mean characteristics of the surrounding grid, in particular, elevation, solar radiation index and vegetation density. These scaling relationships may improve snow sensor data assimilation; an example application is illustrated for the National Operational Hydrologic Remote Sensing Center National Snow Analysis SWE product. The snow sensor bias information indicated that the assimilation of point data into the National Operational Hydrologic Remote Sensing Center model was often unnecessary and reduced model accuracy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
999.
This paper applies a behavioral economics model of cigarette addiction to the issue of fossil fuel usage and climate change. Both problems involve consumption of a currently beneficial product that causes detrimental effects in the distant future and for which current reductions in usage induces an adjustment cost. The paper argues that because fossil fuel control requires solving an international public goods problem as well as an addiction-like problem, breaking it will be more challenging. Using insights from the model, it also suggests that fossil fuel addiction, like cigarette addiction, may generate a long period of time in which people express sincere desire to convert to clean energy, but accomplish little to achieve that outcome. Finally the paper examines the history of the international anti-smoking campaign to draw insights for the campaign against global climate change. The analogy suggests that policies to reduce the present cost of non-carbon energy sources to induce voluntary adjustments in energy usage, or, policies that induce cleaner usage of fossil fuels, or geo-engineering policies that work to reverse the warming effects of higher CO2 concentrations, may be more viable than policies that raise the cost of current fossil fuel consumption.  相似文献   
1000.
The availability of dissolved O2 can limit biodegradation of organic compounds in aquifers. Where O2 is depleted, biodegradation proceeds via anaerobic processes, including NO3-, Mn(IV)-, Fe(III)- and SO4-reduction and fermentation/methanogenesis. The environmental controls on these anaerobic processes must be understood to support implementation of management strategies such as monitored natural attenuation (MNA). In this study stable isotope analysis is used to show that the relative significance of two key anaerobic biodegradation processes (bacterial SO4 reduction (BSR) and methanogenesis) in a phenol-contaminated sandstone aquifer is sensitive to spatial and temporal changes in total dissolved phenols concentration (TPC) (= phenol + cresols + dimethylphenols) over a 5-a period. In general, 34SO4-enrichment (characteristic of bacterial SO4 reduction) is restricted spatially to locations where TPC < 2000 mg L−1. In contrast, 13C-depleted CH4 and 13C-enriched CO2 isotope compositions (characteristic of methanogenesis) were measured at TPC up to 8000 mg L−1. This is consistent with previous studies that demonstrate suppression of BSR at TPC of >500 mg L−1, and suggests that methanogenic microorganisms may have a higher tolerance for TPC in this contaminant plume. It is concluded that isotopic enrichment trends can be used to identify conditions under which in situ biodegradation may be limited by the properties of the biodegradation substrate (in this case TPC). Such data may be used to deduce the performance of MNA for contaminated groundwater in similar settings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号