首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79006篇
  免费   900篇
  国内免费   1225篇
测绘学   2590篇
大气科学   5761篇
地球物理   14829篇
地质学   31834篇
海洋学   6006篇
天文学   13909篇
综合类   2226篇
自然地理   3976篇
  2021年   398篇
  2020年   405篇
  2019年   453篇
  2018年   7228篇
  2017年   6461篇
  2016年   4525篇
  2015年   885篇
  2014年   1087篇
  2013年   2104篇
  2012年   2751篇
  2011年   5855篇
  2010年   5164篇
  2009年   5841篇
  2008年   4769篇
  2007年   5753篇
  2006年   1681篇
  2005年   1938篇
  2004年   1929篇
  2003年   1958篇
  2002年   1611篇
  2001年   1116篇
  2000年   1062篇
  1999年   823篇
  1998年   834篇
  1997年   828篇
  1996年   669篇
  1995年   655篇
  1994年   615篇
  1993年   567篇
  1992年   525篇
  1991年   486篇
  1990年   498篇
  1989年   479篇
  1988年   455篇
  1987年   542篇
  1986年   475篇
  1985年   588篇
  1984年   634篇
  1983年   582篇
  1982年   523篇
  1981年   587篇
  1980年   486篇
  1979年   446篇
  1978年   429篇
  1977年   425篇
  1976年   384篇
  1975年   370篇
  1974年   369篇
  1973年   376篇
  1971年   221篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
101.
AGGLOMERATION AND RADIATION EFFECT OF THE PULL OF URBANIZATION   总被引:2,自引:1,他引:1  
In order to explore the train of thought for China‘s urbanizing development and coordinated rural eco-nomic development, and to find good ways of solving rural problems through urbanization, this paper absorbs the push-and-pull forces theory and the systematic dynamic theory in the traditional population migration theories, views urbanization as a dynamic system, makes research on the push-and-pull mechanism of urbanization. The pulling power of urbanization is analyzed according to two aspects, the agglomeration effect and the radiation effect of cities. The agglomeration effect provides continuous propelling force for urbanization, and the radiation effect further accelerates the urbanization process by pushing forward the development of rural economy. Of course, the slow de-velopment of urbanization can result in the hindrance to rural economic development.  相似文献   
102.
103.
Based on the analysis of the development of GIS technology and application,this paper brought forward the concept of GoGIS,namely Cooperative GIS ,CoGIS is GIS facing group-users and supporting human-human interaction,which makes it differ from the former GISs,Then,the characteristics of general Computer Spport Cooperative Work (CSCW)applications and the complexity of Geographic Information Science were analyzed,and the conclusion the CoGIS was not a simple GIS layer on CSCW was reached,Further,this paper gaver the hierarchical architecture of CoGIS,and analyzed the coperative platform in detail from the following:1)basic elements;2) collaboration patterns;3) cooperation control mechanism;4) synchronization mechanism;5) security and 6) group communication and so on.With those,the problems about GIS applications are discussed,such as 1)distributed multi-source GIS information and knowledge sharing platform;2)the fusion and visualization of GIS information;3)virtual reality cooperative modeling;4) dymamic simulation;5)expert system and 6) decision-making.Finally,this paper analyzed CoGIS application mode in brief.  相似文献   
104.
105.
High resolution echelle spectroscopic observations taken with the FEROS spectrograph at the 2.2 m telescope ESO confirm the binary nature of the flare M3.5V star LU Vel (GJ 375, RE J0958-462) previously reported by Christian and Mathioudakis (2002). Emission of similar intensity from both components is detected in the Balmer, Na i D1&D2, He i D3, Ca ii H&K, and Ca ii IRT lines. We have determined precise radial velocities by cross correlation with radial velocity standard stars, which have allowed us to obtain for the first time the orbital solution of the system. The binary consists of two near-equal M3.5V components with an orbital period shorter than 2 days. We have analyzed the behaviour of the chromospheric activity indicators (variability and possible flares). In addition, we have determined its rotational velocity and kinematics.  相似文献   
106.
Measurements of 18O concentrations in precipitation, soil solution, spring and runoff are used to determine water transit time in the small granitic Strengbach catchment (0·8 km2; 883–1146 m above sea level) located in the Vosges Mountains of northeastern France. Water transit times were calculated by applying the exponential, exponential piston and dispersion models of the FlowPC program to isotopic input (rainfall) and output (spring and stream water) data sets during the period 1989–95. The input function of the model was modified compared with the former version of the model and estimated by a deterministic approach based on a simplified hydrological balance. The fit between observed and calculated output data showed marked improvements compared with results obtained using the initial version of the model. An exponential piston version of the model applied to spring water indicates a 38·5 month mean transit time, which suggests that the volume in the aquifer, expressed in water depth, is 2·4 m. A considerable thickness (>45 m) of fractured bedrock may be involved for such a volume of water to be stored in the aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
107.
108.
Green Lake Landslide is an ancient giant rock slide in gneiss and granodiorite located in the deeply glaciated Fiordland region of New Zealand. The landslide covers an area of 45 km2 and has a volume of about 27 km3. It is believed to be New Zealand's largest landslide, and possibly the largest landslide of its type on Earth. It is one of 39 known very large (106–107 m3) and giant (≥108 m3) postglacial landslides in Fiordland discussed in the paper. Green Lake Landslide resulted in the collapse of a 9 km segment of the southern Hunter Mountains. Slide debris moved up to 2.5 km laterally and 700 m vertically, and formed a landslide dam about 800 m high, impounding a lake about 11 km long that was eventually infilled with sediments. Geomorphic evidence supported by radiocarbon dating indicates that Green Lake Landslide probably occurred 12 000–13 000 years ago, near the end of the last (Otira) glaciation. The landslide is described, and its geomorphic significance, age, failure mechanism, cause, and relevance in the region are discussed, in relation to other large landslides and recent earthquake-induced landslides in Fiordland. The slope failure occurred on a low-angle fault zone undercut by glacial erosion, and was probably triggered by strong shaking (MM IX–X) associated with a large (≥ M 7.5–8) earthquake, on the Alpine Fault c. 80 km to the northwest. Geology was a major factor that controlled the style and size of Green Lake landslide, and in that respect it is significantly different from most other gigantic landslides. Future large earthquakes on the Alpine Fault in Fiordland are likely to trigger more very large and giant landslides across the region, causing ground damage and devastation on a scale that has not occurred during the last 160 years, with potentially disastrous effects on towns, tourist centres, roads, and infrastructure. The probability of such an event occurring within the next 50 years may be as high as 45%.  相似文献   
109.
Approach to Mountain Hazards in Tibet, China   总被引:1,自引:1,他引:0  
Tibet is located at the southwest boundary of China. It is the main body of the Qinghai-Tibet Plateau, the highest and the youngest plateau in the world. Owing to complicated geology, Neo-tectonic movements, geomorphology, climate and plateau environment, various mountain hazards, such as debris flow, flash flood, landslide, collapse, snow avalanche and snow drifts, are widely distributed along the Jinsha River (the upper reaches of the Yangtze River), the Nu River and the Lancang River in the east, and the Yarlungzangbo River, the Pumqu River and the Poiqu River in the south and southeast of Tibet. The distribution area of mountain hazards in Tibet is about 589,000 km^2, 49.3% of its total territory. In comparison to other mountain regions in China, mountain hazards in Tibet break out unexpectedly with tremendously large scale and endanger the traffic lines, cities and towns, farmland, grassland, mountain environment, and make more dangers to the neighboring countries, such as Nepal, India, Myanmar and Bhutan. To mitigate mountain hazards, some suggestions are proposed in this paper, such as strengthening scientific research, enhancing joint studies, hazards mitigation planning, hazards warning and forecasting, controlling the most disastrous hazards and forbidding unreasonable human exploring activities in mountain areas.  相似文献   
110.
Abstract— A large impact event 500 Ma ago shocked and melted portions of the L‐chondrite parent body. Chico is an impact melt breccia produced by this event. Sawn surfaces of this 105 kg meteorite reveal a dike of fine‐grained, clast‐poor impact melt cutting shocked host chondrite. Coarse (1–2 cm diameter) globules of FeNi metal + sulfide are concentrated along the axis of the dike from metal‐poor regions toward the margins. Refractory lithophile element abundance patterns in the melt rock are parallel to average L chondrites, demonstrating near‐total fusion of the L‐chondrite target by the impact and negligible crystal‐liquid fractionation during emplacement and cooling of the dike. Significant geochemical effects of the impact melting event include fractionation of siderophile and chalcophile elements with increasing metal‐silicate heterogeneity, and mobilization of moderately to highly volatile elements. Siderophile and chalcophile elements ratios such as Ni/Co, Cu/Ga, and Ir/Au vary systematically with decreasing metal content of the melt. Surprisingly small (?102) effective metal/silicate‐melt distribution coefficients for highly siderophile elements probably reflect inefficient segregation of metal despite the large degrees of melting. Moderately volatile lithophile elements such K and Rb were mobilized and heterogeneously distributed in the L‐chondrite impact breccias whereas highly volatile elements such as Cs and Pb were profoundly depleted in the region of the parent body sampled by Chico. Volatile element variations in Chico and other L chondrites are more consistent with a mechanism related to impact heating rather than condensation from a solar nebula. Impact processing can significantly alter the primary distributions of siderophile and volatile elements in chondritic planetesimals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号