首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   11篇
  国内免费   1篇
测绘学   4篇
大气科学   10篇
地球物理   211篇
地质学   44篇
海洋学   2篇
天文学   55篇
自然地理   8篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2017年   6篇
  2016年   4篇
  2015年   9篇
  2014年   6篇
  2013年   10篇
  2012年   8篇
  2011年   7篇
  2010年   4篇
  2009年   6篇
  2007年   6篇
  2006年   8篇
  2004年   7篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   16篇
  1999年   9篇
  1998年   4篇
  1997年   10篇
  1996年   8篇
  1994年   9篇
  1993年   6篇
  1992年   9篇
  1991年   4篇
  1990年   5篇
  1988年   7篇
  1987年   7篇
  1986年   6篇
  1984年   5篇
  1983年   5篇
  1982年   7篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1974年   7篇
  1973年   5篇
  1972年   5篇
  1971年   6篇
  1970年   7篇
  1968年   3篇
  1967年   3篇
  1965年   5篇
  1963年   3篇
  1962年   3篇
  1961年   3篇
  1959年   3篇
排序方式: 共有334条查询结果,搜索用时 539 毫秒
61.
The geopotential scale factor R o = GM/W o (the GM geocentric gravitational constant adopted) and/or geoidal potential Wo have been determined on the basis of the first year's (Oct 92 – Dec 93) ERS-1/TOPEX/POSEIDON altimeter data and of the POCM 4B sea surface topography model: R o °=(6 363 672.58°±0.05) m, W o °=(62 636 855.8°±0.05)m 2 s –2 . The 2°–°3 cm uncertainty in the altimeter calibration limits the actual accuracy of the solution. Monitoring dW o /dt has been projected.  相似文献   
62.
63.
64.
Summary The four primary geodetic parameters defining the geodetic reference system are discussed from the point of view of their physical meaning and current estimation of their actual accuracy. The geopotential scale factor has been treated as the primary geodetic parameter defining the Earth's dimensions.
¶rt;am m nu¶rt;uu naama, n¶rt;u¶rt;u um mumu, mu u uu a u mmu. ama amnmuaa ¶rt;am am nu¶rt;u naama, n¶rt; a u.
  相似文献   
65.
Stark broadening parameters for nine neutral oxygen (O I) lines have been determined within the impact approximation and the semiclassical perturbation method. The atomic data have been taken from the TOPbase and NIST atomic databases. The electron and proton Stark widths and shifts and ion broadening parameter values for these O I lines have been calculated for electron density of 10 16 cm ?3 and for 4 different electron temperatures in the range of 5000 K to 40000 K. These Stark broadening parameters are compared with our previous results (Ben Nessib, N. et al. 1996, Physica Scripta, 54, 603–613), where we calculated Stark broadening parameters for only four O I spectral lines and where Stark widths and shifts were compared with experimental and theoretical data available in the literature. In the present paper, we have also compared our results with the Griem’s book (Griem, H. R. 1974, Spectral line broadening by plasmas) and VALD (Ryabchikova, T. et al. 2015, Physica Scripta, 90, 054005) values.  相似文献   
66.
Summary The present theory of the determination of the position of an Earth satellite from simultaneous measurements of the topocentric coordinates at 2 or more geodetic satellite points is not exact. The inaccuracy is caused by the fact that the measured topocentric coordinates of the satellite are defined in a system in which the directions of the axes are not exactly parallel to the directions of the corresponding axes of the geodetic system in which the coordinates of the satellite points are given; this difference in direction is not respected in the solution. The paper gives an exact solution of the problem. The concepts (4) of geodetic topocentric declination and geodetic hour angle of the satellite, i.e. the declination and hour angle in the geodetic reference system, are introduced. With these quantities the problem of determining the position of the satellite is then solved exactly. There always exist superabundant observations so that the method of least squares can be used. The procedure is outlined for the case of conditioned observations (suitable for 2 satellite geodetic points) and for the case of intermediate observations (suitable for >2 satellite geodetic points).   相似文献   
67.
68.
The dynamics of the cusp region and post-noon sector for an interval of predominantly IMF By, Bz < 0 nT are studied with the CUTLASS Finland coherent HF radar, a meridian-scanning photometer located at Ny Ålesund, Svalbard, and a meridional network of magnetometers. The scanning mode of the radar is such that one beam is sampled every 14 s, and a 30° azimuthal sweep is completed every 2 minutes, all at 15 km range resolution. Both the radar backscatter and red line (630 nm) optical observations are closely co-located, especially at their equatorward boundary. The optical and radar aurora reveal three different behaviours which can interchange on the scale of minutes, and which are believed to be related to the dynamic nature of energy and momentum transfer from the solar wind to the magnetosphere through transient dayside reconnection. Two interpretations of the observations are presented, based upon the assumed location of the open/closed field line boundary (OCFLB). In the first, the OCFLB is co-located with equatorward boundary of the optical and radar aurora, placing most of the observations on open field lines. In the second, the observed aurora are interpreted as the ionospheric footprint of the region 1 current system, and the OCFLB is placed near the poleward edge of the radar backscatter and visible aurora; in this interpretation, most of the observations are placed on closed field lines, though transient brightenings of the optical aurora occur on open field lines. The observations reveal several transient features, including poleward and equatorward steps in the observed boundaries, braiding of the backscatter power, and 2 minute quasi-periodic enhancements of the plasma drift and optical intensity, predominantly on closed field lines.  相似文献   
69.
The TOPEX/POSEIDON (T/P) satellite altimeter data from January 1, 1993to October 24, 1999 (cycles 11–261) was used for investigating thelong-term variations in the geoidal geopotential W0 and/orin the geopotential scale factor R0 = GM/W0 (GM is theadopted geocentric gravitational constant). The mean valuesdetermined for the whole period covered are: W0 =(62 636 856.161 ± 0.002) m2 s-2, R0 =(6 363 672.5448 ± 0.0002) m. The actual accuracy is limited bythe altimeter calibration error (2–3 cm) and it isestimated to be about ± 0.5 m2 s-2 (± 5 cm).The yearly variations of the above mean values are at the formalerror level. No long-term trend in W0, representing the oceanvolume change, was found for the seven years period 1993–9 on thebasis of T/P altimeter (AVISO) data. No sea surface topography modelwas used in the solution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
70.
Summary Radii of curvature and their anomalies of a smoothed geoidal surface are computed using Stokes's constants J n (k) , S n (k) of the Earth's body, obtained from satellite orbit dynamics[2]. Different degrees n of smoothing are used (n = 8, 12, 21). The notations are the same as in[4, 5].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号