首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20791篇
  免费   3891篇
  国内免费   4908篇
测绘学   1072篇
大气科学   4340篇
地球物理   5322篇
地质学   10539篇
海洋学   2373篇
天文学   912篇
综合类   2443篇
自然地理   2589篇
  2024年   60篇
  2023年   314篇
  2022年   887篇
  2021年   1007篇
  2020年   870篇
  2019年   954篇
  2018年   1181篇
  2017年   1063篇
  2016年   1260篇
  2015年   950篇
  2014年   1236篇
  2013年   1247篇
  2012年   1144篇
  2011年   1214篇
  2010年   1150篇
  2009年   1166篇
  2008年   1030篇
  2007年   997篇
  2006年   771篇
  2005年   831篇
  2004年   588篇
  2003年   623篇
  2002年   606篇
  2001年   576篇
  2000年   677篇
  1999年   1024篇
  1998年   814篇
  1997年   895篇
  1996年   822篇
  1995年   690篇
  1994年   567篇
  1993年   511篇
  1992年   394篇
  1991年   286篇
  1990年   231篇
  1989年   176篇
  1988年   173篇
  1987年   127篇
  1986年   104篇
  1985年   70篇
  1984年   50篇
  1983年   43篇
  1982年   36篇
  1981年   27篇
  1980年   35篇
  1979年   27篇
  1978年   15篇
  1976年   11篇
  1975年   14篇
  1958年   18篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
991.
The mechanisms behind the seasonal deepening of the mixed layer(ML) in the subtropical Southeast Pacific were investigated using the monthly Argo data from 2004 to 2012. The region with a deep ML(more than 175 m) was found in the region of(22?–30?S, 105?–90?W), reaching its maximum depth(~200 m) near(27?–28?S, 100?W) in September. The relative importance of horizontal density advection in determining the maximum ML location is discussed qualitatively. Downward Ekman pumping is key to determining the eastern boundary of the deep ML region. In addition, zonal density advection by the subtropical countercurrent(STCC) in the subtropical Southwest Pacific determines its western boundary, by carrying lighter water to strengthen the stratification and form a "shallow tongue" of ML depth to block the westward extension of the deep ML in the STCC region. The temperature advection by the STCC is the main source for large heat loss from the subtropical Southwest Pacific. Finally, the combined effect of net surface heat flux and meridional density advection by the subtropical gyre determines the northern and southern boundaries of the deep ML region: the ocean heat loss at the surface gradually increases from 22?S to 35?S, while the meridional density advection by the subtropical gyre strengthens the stratification south of the maximum ML depth and weakens the stratification to the north. The freshwater flux contribution to deepening the ML during austral winter is limited. The results are useful for understanding the role of ocean dynamics in the ML formation in the subtropical Southeast Pacific.  相似文献   
992.
993.
994.
995.
996.
Based on the dynamic framework of WRF and Morrison 2-moment explicit cloud scheme, a salt-seeding scheme was developed and used to simulate the dissipation of a warm fog event during 6–7 November 2009 in the Beijing and Tianjin area. The seeding effect and its physical mechanism were studied. The results indicate that when seeding fog with salt particles sized 80 μm and at a quantity of 6 gm~(-2) at the fog top, the seeding effect near the ground surface layer is negative in the beginning period, and then a positive seeding effect begins to appear at 18 min, with the best effect appearing at 21 min after seeding operation. The positive effect can last about 35 min. The microphysical mechanism of the warm fog dissipation is because of the evaporation due to the water vapor condensation on the salt particles and coalescence with salt particles.The process of fog water coalescence with salt particles contributed mostly to this warm fog dissipation. Furthermore, two series of sensitivity experiments were performed to study the seeding effect under different seeding amounts and salt particles sizes. The results show that seeding fog with salt particles sized of 80 μm can have the best seeding effect, and the seeding effect is negative when the salt particle size is less than 10 μm. For salt particles sized 80 μm, the best seeding effect, with corresponding visibility of 380 m, can be achieved when the seeding amount is 30 g m~(-2).  相似文献   
997.
In order to reduce the uncertainty of offline land surface model(LSM) simulations of land evapotranspiration(ET), we used ensemble simulations based on three meteorological forcing datasets [Princeton, ITPCAS(Institute of Tibetan Plateau Research, Chinese Academy of Sciences), Qian] and four LSMs(BATS, VIC, CLM3.0 and CLM3.5), to explore the trends and spatiotemporal characteristics of ET, as well as the spatiotemporal pattern of ET in response to climate factors over mainland China during 1982–2007. The results showed that various simulations of each member and their arithmetic mean(Ens Mean) could capture the spatial distribution and seasonal pattern of ET sufficiently well, where they exhibited more significant spatial and seasonal variation in the ET compared with observation-based ET estimates(Obs MTE). For the mean annual ET, we found that the BATS forced by Princeton forcing overestimated the annual mean ET compared with Obs MTE for most of the basins in China, whereas the VIC forced by Princeton forcing showed underestimations. By contrast, the Ens Mean was closer to Obs MTE, although the results were underestimated over Southeast China. Furthermore, both the Obs MTE and Ens Mean exhibited a significant increasing trend during 1982–98; whereas after 1998, when the last big EI Ni ?no event occurred, the Ens Mean tended to decrease significantly between 1999 and 2007, although the change was not significant for Obs MTE. Changes in air temperature and shortwave radiation played key roles in the long-term variation in ET over the humid area of China, but precipitation mainly controlled the long-term variation in ET in arid and semi-arid areas of China.  相似文献   
998.
Trends in precipitation are critical to water resources. Considerable uncertainty remains concerning the trends of regional precipitation in response to global warming and their controlling mechanisms. Here, we use an interannual difference method to derive trends of regional precipitation from GPCP(Global Precipitation Climatology Project) data and MERRA(ModernEra Retrospective Analysis for Research and Applications) reanalysis in the near-global domain of 60?S–60?N during a major global warming period of 1979–2013. We find that trends of regional annual precipitation are primarily driven by changes in the top 30% heavy precipitation events, which in turn are controlled by changes in precipitable water in response to global warming, i.e., by thermodynamic processes. Significant drying trends are found in most parts of the U.S. and eastern Canada,the Middle East, and eastern South America, while significant increases in precipitation occur in northern Australia, southern Africa, western India and western China. In addition, as the climate warms there are extensive enhancements and expansions of the three major tropical precipitation centers–the Maritime Continent, Central America, and tropical Africa–leading to the observed widening of Hadley cells and a significant strengthening of the global hydrological cycle.  相似文献   
999.
基于贝叶斯模型的中国未来气温变化预估及不确定性分析   总被引:3,自引:0,他引:3  
利用第5次耦合模式比较计划(CMIP5)中35个全球气候模式历史模拟与RCP4.5预估结果,通过贝叶斯模型平均(Bayesian Model Averaging,BMA)对中国气温进行多模式集合研究,给出了中国未来气温变化预估及其不确定性的时空分布。结果表明,中国21世纪冬夏将持续升温,且升温具有冬季高于夏季,北方高于南方的特点。初期(2016—2035年)北方有很大可能(80%)升温超过0.7℃,南方升温相同幅度的概率则超过50%;中期(2046—2065年)北方和南方升温超过1.5℃的概率分别为80%和50%;末期(2081—2100年),北方(南方)有80%(50%)的可能的升温超过2℃。气温预估的不确定性研究发现,无论冬夏,21世纪不同时期升温相对较弱的塔里木盆地、青藏高原南侧和中国东南地区为不确定性低值区,基本低于0.6℃,对应可信度较高,如21世纪初期信噪比超过4;而不确定性的高值区则主要分布在新疆北部、东北平原北部和青藏高原东南侧等升温相对较大的地区,普遍高于1℃,对应可信度较低,如初期信噪比低于2.5。此外,基于信噪比对比发现除青藏高原东部外,其他区域夏季预估的可信度均高于冬季,21世纪末期高于初期,且空间分布特征一致。  相似文献   
1000.
A comparative study on the vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai was conducted based on the data obtained from a micro pulse lidar.There was a distinct difference in layer thickness and extinction coefficient under the two types of weather conditions.Aerosols were concentrated below 1 km and the aerosol extinction coefficients ranged from 0.25 to 1.50km-1 on haze days.In contrast,aerosols with smaller extinction coefficients(0.20 0.35 km-1) accumulated mainly from the surface to 2 km on floating dust days.The seasonal variations of extinction and aerosol optical depth(AOD) for both haze and floating dust cases were similar greatest in winter,smaller in spring,and smallest in autumn.More than 85%of the aerosols appeared in the atmosphere below 1 km during severe haze and floating dust weather.The diurnal variation of the extinction coefficient of haze exhibited a bimodal shape with two peaks in the morning or at noon,and at nightfall,respectively.The aerosol extinction coefficient gradually increased throughout the day during floating dust weather.Case studies showed that haze aerosols were generated from the surface and then lifted up,but floating dust aerosols were transported vertically from higher altitude to the surface.The AOD during floating dust weather was higher than that during haze.The boundary layer was more stable during haze than during floating dust weather.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号