首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   3篇
  国内免费   2篇
大气科学   24篇
地球物理   24篇
地质学   22篇
海洋学   2篇
天文学   3篇
自然地理   11篇
  2022年   1篇
  2020年   3篇
  2018年   2篇
  2017年   2篇
  2016年   9篇
  2015年   2篇
  2014年   2篇
  2013年   7篇
  2012年   6篇
  2011年   5篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1946年   1篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
31.
Abstract

The results of a field test of time‐domain reflectometry (TDR) to measure apparent liquid soil water contents and to locate the unfrozen‐frozen interface during thawing conditions is presented. The apparent liquid water content was observed in the fall and through a late winter thaw on two sand sites, one with a natural snow cover and the other with snow removed throughout the winter. Temperatures were monitored at intervals throughout the profile. The results indicate that TDR provides a method for monitoring apparent liquid water content andfreeze‐thaw processes.  相似文献   
32.
33.
To assess the influence of global climate change at the regional scale, we examine past and future changes in key climate, hydrological, and biophysical indicators across the US Northeast (NE). We first consider the extent to which simulations of twentieth century climate from nine atmosphere-ocean general circulation models (AOGCMs) are able to reproduce observed changes in these indicators. We then evaluate projected future trends in primary climate characteristics and indicators of change, including seasonal temperatures, rainfall and drought, snow cover, soil moisture, streamflow, and changes in biometeorological indicators that depend on threshold or accumulated temperatures such as growing season, frost days, and Spring Indices (SI). Changes in indicators for which temperature-related signals have already been observed (seasonal warming patterns, advances in high-spring streamflow, decreases in snow depth, extended growing seasons, earlier bloom dates) are generally reproduced by past model simulations and are projected to continue in the future. Other indicators for which trends have not yet been observed also show projected future changes consistent with a warmer climate (shrinking snow cover, more frequent droughts, and extended low-flow periods in summer). The magnitude of temperature-driven trends in the future are generally projected to be higher under the Special Report on Emission Scenarios (SRES) mid-high (A2) and higher (A1FI) emissions scenarios than under the lower (B1) scenario. These results provide confidence regarding the direction of many regional climate trends, and highlight the fundamental role of future emissions in determining the potential magnitude of changes we can expect over the coming century.
Katharine HayhoeEmail:
  相似文献   
34.
Cadmium is a biologically important trace metal that co-varies with phosphate (PO43− or Dissolved Inorganic Phosphate, DIP) in seawater. However, the exact nature of Cd uptake mechanisms and the relationship with phosphate and other nutrients in global oceans remain elusive. Here, we present a time series study of Cd and PO43− from coastal Antarctic seawater, showing that Cd co-varies with macronutrients during times of high biological activity even under nutrient and trace metal replete conditions. Our data imply that Cd/PO43− in coastal surface Antarctic seawater is higher than open ocean areas. Furthermore, the sinking of some proportion of this high Cd/PO43− water into Antarctic Bottom Water, followed by mixing into Circumpolar Deep Water, impacts Southern Ocean preformed nutrient and trace metal composition. A simple model of endmember water mass mixing with a particle fractionation of Cd/P (αCd–P) determined by the local environment can be used to account for the Cd/PO43− relationship in different parts of the ocean. The high Cd/PO43− of the coastal water is a consequence of two factors: the high input from terrestrial and continental shelf sediments and changes in biological fractionation with respect to P during uptake of Cd in regions of high Fe and Zn. This implies that the Cd/PO43− ratio of the Southern Ocean will vary on glacial–interglacial timescales as the proportion of deep water originating on the continental shelves of the Weddell Sea is reduced during glaciations because the ice shelf is pinned at the edge of the continental shelf. There could also be variations in biological fractionation of Cd/P in the surface waters of the Southern Ocean on these timescales as a result of changes in atmospheric inputs of trace metals. Further variations in the relationship between Cd and PO43− in seawater arise from changes in population structure and community requirements for macro- and micronutrients.  相似文献   
35.
The X-Ray Telescope (XRT) onboard the Hinode satellite, launched 23 September 2006 by the Japan Aerospace Exploration Agency (JAXA), is a joint mission of Japan, the United States, and the United Kingdom to study the solar corona. In particular, XRT was designed to study solar plasmas with temperatures between 1 and 10 MK with ≈?1″ pixels (≈?2″ resolution). Prior to analysis, the data product from this instrument must be properly calibrated and data values quantified to accurately assess the information contained within. We present here the standard methods of calibration for these data. The calibration was performed on an empirical basis that uses the least complicated correction that accurately describes the data while suppressing spurious features. By analyzing the uncertainties remaining in the data after calibration, we conclude that the procedure is successful, because the remaining uncertainty after calibration is dominated by photon noise. This calibration software is available in the SolarSoft software library.  相似文献   
36.
The importance of climate services, i.e. providing targeted, tailored, and timely weather and climate information, has gained momentum, but requires improved understanding of user needs. This article identifies the opportunities and barriers to the use of climate services for planning in Malawi, to identify the types of information that can better inform future adaptation decisions in sub-Saharan Africa. From policy analysis, stakeholder interviews, and a national workshop utilizing serious games, it is determined that only 5–10 day and seasonal forecasts are currently being used in government decision making. Impediments to greater integration of climate services include spatial and temporal scale, accessibility, timing, credibility and the mismatch in timeframes between planning cycles (1–5 years) and climate projections (over 20 years). Information that could more usefully inform planning decisions includes rainfall distribution within a season, forecasts with 2–3 week lead times, likely timing and location of extreme events in the short term (1–5 years), and projections (e.g. rainfall and temperature change) in the medium term (6–20 years). Development of a national set of scenarios would also make climate information more accessible to decision makers, and capacity building around such scenarios would enable its improved use in short- to medium-term planning. Improved climate science and its integration with impact models offer exciting opportunities for integrated climate-resilient planning across sub-Saharan Africa. Accrual of positive impacts requires enhanced national capacity to interpret climate information and implement communication strategies across sectors.

Policy relevance

For climate services to achieve their goal of improving adaptation decision making, it is necessary to understand the decision making process and how and when various types of weather and climate information can be incorporated. Through a case study of public sector planning in Malawi, this article highlights relevant planning and policy-making processes. The current use of weather and climate information and needs, over various timescales – sub-annual to short term (1–5 years) to medium term (6–20 years) – is outlined. If climate scientists working with boundary organizations are able to address these issues in a more targeted, sector-facing manner they will improve the uptake of climate services and the likelihood of climate-resilient decisions across sub-Saharan Africa.  相似文献   
37.
Triggering mechanisms of large silicic eruptions remain a critical unsolved problem. We address this question for the ~2.08-Ma caldera-forming eruption of Cerro Galán volcano, Argentina, which produced distinct pumice populations of two colors: grey (5%) and white (95%) that we believe may hold clues to the onset of eruptive activity. We demonstrate that the color variations correspond to both textural and compositional variations between the clast types. Both pumice types have bulk compositions of high-K, high-silica dacite to low-silica rhyolite, but there are sufficient compositional differences (e.g., ~150?ppm lower Ba at equivalent SiO2 content and 0.03?wt.% higher TiO2 in white pumice than grey) to suggest that the two pumice populations are not related by simple fractionation. Trace element concentrations in crystals mimic bulk variations between clast types, with grey pumice containing elevated Ba, Cu, Pb, and Zn concentrations in both bulk samples (average Cu, Pb, and Zn concentrations are 27, 35, and 82 in grey pumice vs. 11, 19, and 60 in white pumice) and biotite phenocrysts and white pumice showing elevated Li concentrations in biotite and plagioclase phenocrysts. White and grey clasts are also texturally distinct: White pumice clasts contain abundant phenocrysts (44?C57%), lack microlites, and have highly evolved groundmass glass compositions (76.4?C79.6?wt.% SiO2), whereas grey pumice clasts contain a lower percentage of phenocrysts/microphenocrysts (35?C49%), have abundant microlites, and have less evolved groundmass glass compositions (69.4?C73.8?wt.% SiO2). There is also evidence for crystal transfer between magma producing white and grey pumice. Thin highly evolved melt rims surround some fragmental crystals in grey pumice clasts and appear to have come from magma that produced white pumice. Furthermore, based on crystal compositions, white bands within banded pumice contain crystals originating in grey magma. Finally, only grey pumice clasts form breadcrusted surface textures. We interpret these compositional and textural variations to indicate distinct magma batches, where grey pumice originated from an originally deeper, more volatile-rich dacite recharge magma that ascended through and mingled with the volumetrically dominant, more highly crystalline chamber that produced white pumice. Shortly before eruption, the grey pumice magma stalled within shallow fractures, forming a vanguard magma phase whose ascent may have provided a trigger for eruption of the highly crystalline rhyodacite magma. We suggest that in the case of the Cerro Galán eruption, grey pumice provides evidence not only for cryptic silicic recharge in a large caldera system but also a probable trigger for the eruption.  相似文献   
38.
We assess the ability of Global Climate Models participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) to simulate observed annual precipitation cycles over the Caribbean. Compared to weather station records and gridded observations, we find that both CMIP3 and CMIP5 models can be grouped into three categories: (1) models that correctly simulate a bimodal distribution with two rainfall maxima in May–June and September–October, punctuated by a mid-summer drought (MSD) in July–August; (2) models that reproduce the MSD and the second precipitation maxima only; and (3) models that simulate only one precipitation maxima, beginning in early summer. These categories appear related to model simulation of the North Atlantic Subtropical High (NASH) and sea surface temperature (SST) in the Caribbean Sea and Gulf of Mexico. Specifically, models in category 2 tend to anticipate the westward expansion of the NASH into the Caribbean in early summer. Early onset of NASH results in strong moisture divergence and MSD-like conditions at the time of the May–June observed precipitation maxima. Models in category 3 tend to have cooler SST across the region, particularly over the central Caribbean and the Gulf of Mexico, as well as a weaker Caribbean low-level jet accompanying a weaker NASH. In these models, observed June-like patterns of moisture convergence in the central Caribbean and the Central America and divergence in the east Caribbean and the Gulf of Mexico persist through September. This analysis suggests systematic biases in model structure may be responsible for biases in observed precipitation variability over the Caribbean and more confidence may be placed in the precipitation simulated by the GCMs that are able to correctly simulate seasonal cycles of SST and NASH.  相似文献   
39.
Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment and local human activities such as surface and ground water withdrawals, land use and energy extraction, and variability and long‐term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. Over time scales ranging from 1 week to 2 years, we find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation. Based on these relationships combined with regional climate projections, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate and chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
40.
The 22 km3 (DRE) 1.8 ka Taupo eruption ejected chemically uniform rhyolite in a wide range of eruptive styles and intensities. The 7 eruptive units include the ‘type examples’ of phreatoplinian (units 3 and 4) and ultraplinian fall (unit 5) deposits, and low-aspect-ratio ignimbrite (unit 6). Contrasts in bulk vesicularity, vesicle (and microlite) number densities and the size distributions of bubbles (and crystals) in the Taupo ejecta can be linked to the influence of shallow conduit processes on volatile exsolution and gas escape, before and during eruption, rather than changes in pre-eruptive chemistry. Existing work has modeled the individual phases of this complex eruption but not fully explained the abrupt shifts in style/intensity that occur between phases. We link these rapid transitions to changes in vent position, which permitted contrasts in storage, conduit geometry, and magma ascent history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号