首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6637篇
  免费   1429篇
  国内免费   2018篇
测绘学   894篇
大气科学   1454篇
地球物理   1296篇
地质学   3201篇
海洋学   1249篇
天文学   185篇
综合类   681篇
自然地理   1124篇
  2024年   60篇
  2023年   145篇
  2022年   458篇
  2021年   515篇
  2020年   406篇
  2019年   462篇
  2018年   462篇
  2017年   441篇
  2016年   412篇
  2015年   495篇
  2014年   468篇
  2013年   522篇
  2012年   592篇
  2011年   565篇
  2010年   509篇
  2009年   548篇
  2008年   507篇
  2007年   406篇
  2006年   383篇
  2005年   303篇
  2004年   178篇
  2003年   201篇
  2002年   227篇
  2001年   166篇
  2000年   119篇
  1999年   95篇
  1998年   81篇
  1997年   56篇
  1996年   38篇
  1995年   46篇
  1994年   39篇
  1993年   37篇
  1992年   23篇
  1991年   27篇
  1990年   21篇
  1989年   12篇
  1988年   11篇
  1987年   10篇
  1986年   7篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   6篇
  1978年   1篇
  1958年   3篇
  1957年   1篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
991.
Based on hourly rainfall observational data from 442 stations during 1960–2014, a regional frequency analysis of the annual maxima(AM) sub-daily rainfall series(1-, 2-, 3-, 6-, 12-, and 24-h rainfall, using a moving window approach) for eastern China was conducted. Eastern China was divided into 13 homogeneous regions: Northeast(NE1, NE2), Central(C), Central North(CN1, CN2), Central East(CE1, CE2, CE3), Southeast(SE1, SE2, SE3, SE4), and Southwest(SW).The generalized extreme value performed best for the AM series in regions NE, C, CN2, CE1, CE2, SE2, and SW, and the generalized logistic distribution was appropriate in the other regions. Maximum return levels were in the SE4 region, with value ranges of 80–270 mm(1-h to 24-h rainfall) and 108–390 mm(1-h to 24-h rainfall) for 20- and 100 yr, respectively.Minimum return levels were in the CN1 and NE1 regions, with values of 37–104 mm and 53–140 mm for 20 and 100 yr,respectively. Comparing return levels using the optimal and commonly used Pearson-III distribution, the mean return-level differences in eastern China for 1–24-h rainfall varied from-3–4 mm to-23–11 mm(-10%–10%) for 20-yr events, reaching-6–26 mm(-10%–30%) and-10–133 mm(-10%–90%) for 100-yr events. In view of the large differences in estimated return levels, more attention should be given to frequency analysis of sub-daily rainfall over China, for improved water management and disaster reduction.  相似文献   
992.
He  Di  Wang  Jing  Pan  Zhihua  Dai  Tong  Wang  Enli  Zhang  Jianping 《Theoretical and Applied Climatology》2017,130(1-2):477-486
Theoretical and Applied Climatology - Wheat production in Southwest China (SWC) plays a vital role in guaranteeing local grain security, but it is threatened by increasingly frequent seasonal...  相似文献   
993.
Qu  Jingxuan  Gong  Daoyi  Mao  Rui  Yang  Jing  Li  Sang 《Theoretical and Applied Climatology》2017,129(1-2):487-502
Theoretical and Applied Climatology - The sandy land in the southern region of the Tengger Desert is adjacent to cities and towns, and land desertification poses a threat to the livelihood and...  相似文献   
994.
选取4次伊犁河谷、天山北坡暴雨天气过程,利用地面逐时降水、常规、NCEP/NCAR 1°×1°再分析及地基GPS遥感的大气水汽总量资料(GPS-PWV),通过合成分析方法得到暴雨期间大气环流的基本配置,阐明了伊犁河谷、天山北坡地区强降水期间环流形势及水汽输送的异同,结果表明:(1)强降水过程中暴雨区上空200 h Pa强辐散气流、500 h Pa槽前正涡度平流、西南气流利于垂直运动的发展,低层偏西、偏东和偏北气流为暴雨区提供水汽和不稳定能量,低层辐合、高层辐散,配合地形辐合抬升,上升运动进一步增强,造成强降水发生;(2)深厚的西西伯利亚低涡低槽系统移速缓慢,停滞时间长,造成强降水前暴雨站增湿时间更长,比较发现强降水发生前暴雨站GPS-PWV均存在1~3 d的增湿过程,暴雨期间测站GPS出现明显跃变,峰值可达到气候平均值的2倍左右;(3)GPS大气可降水量的演变与大尺度的水汽输送、聚集有较好的对应关系,但GPS高值区并不代表降水大值区,还应和动力热力等条件综合判断降水的强弱。  相似文献   
995.
为了提高对黄土高原γ中尺度致洪暴雨预报和预警能力,利用NCEP 1°×1°逐6 h再分析资料、常规观测资料、多普勒天气雷达资料等,对2015年7月18日黄土高原发生的一次γ中尺度致洪暴雨进行了诊断分析。结果表明:700~200 h Pa深厚低涡和低层切变是这次暴雨的主要影响系统;暴雨发生前暴雨区大气层结对流不稳定增强和对流有效位能的增长为强天气的发生提供了有利条件;暴雨发生前地面图上生成的湿焓高能中心、850 h Pa和700 h Pa等压面上生成的对流涡度矢量垂直分量高值中心和暴雨落区形成很好的对应关系;线状中尺度对流系统中β中尺度对流云团的发展加强对强降水有直接影响;线状中尺度对流系统在雷达回波图上体现为多个对流单体组成的带状回波,影响暴雨区的对流单体回波中心强度50 d BZ,径向速度场分析表明γ中尺度气旋性辐合的生成和维持为暴雨的持续提供了动力条件。  相似文献   
996.
孙行知  钟中  卢伟  江静 《气象科学》2017,37(5):579-586
采用1977—2008年日本气象厅(JMA)TC最佳路径集资料和美国气候预测中心(CPC)的ENSO资料,设计了一个考虑热带气旋(TC)尺度信息的累积气旋能量指数(SACE),据此分析了西北太平洋TC活动与ENSO之间的关系。结果表明:相比于不考虑尺度效应的ACE,引入TC尺度信息的SACE增加了较大强度、较大尺度TC活动水平的权重,能够更加准确地刻画TC强度及其影响,其与Ni1o指数的相关性进一步增强。SACE能够更好地表征西北太平洋TC活动与ENSO年际变化的关系,其对ENSO位相的依赖性相对于ACE更为敏感,是一个能更好预测ENSO状态的因子。TC强度、生命史、频数以及尺度均对SACE有一定的贡献,但生命史的贡献最大,这一方面说明ENSO主要通过调制TC生命史来影响SACE,另一方面也说明相对于强度、频数和尺度而言,TC生命史更能影响SACE中的ENSO信号。  相似文献   
997.
南亚高压上下高原时间及其与高原季风建立早晚的关系   总被引:5,自引:3,他引:2  
本文利用1948—2013年NCEP/NCAR逐日再分析资料,定义了南亚高压动态特征指数,讨论了南亚高压上下高原的时间以及与高原季风建立早晚的关系。研究表明,南亚高压北界位置在4月初开始北移,5月迅速北抬,最北可达到55°N,9月开始南撤,西伸脊点在5—10月移动较稳定,5—7月向西移动到青藏高原上空,8—10月向东移动撤离高原,11月—次年4月东西摆动剧烈。南亚高压初上高原大致为6月第3候(33候),而撤离约为10月第4候(58候)。南亚高压移上高原的时间较高原夏季风建立晚73 d左右。南亚高压撤离高原时间较高原冬季风建立约早5 d。高原夏季风的建立和南亚高压初上高原是青藏高原热力作用在不同阶段的结果,反映在了高原的高低层上。  相似文献   
998.
目前我国风云气象卫星广泛使用的1695~1710 MHz频段被2015年世界无线电大会考虑作为国际移动通信(IMT)系统新增划分的候选频段。为了保护气象卫星的频谱资源并了解气象卫星和IMT系统用户端的同频共用干扰情况,本文阐述了风云气象卫星地球站和IMT系统用户终端在1695~1710 MHz频段的特性参数,建立了IMT用户终端的干扰模型,分别仿真分析了潜在的IMT用户端对太阳同步轨道和静止轨道风云气象卫星地面接收链路的干扰,结果表明:工作在1695~1710 MHz频段的IMT用户端对静止和极轨卫星地球站的保护隔离距离至少分别是46km和61km。由于我国布设了大量该频段的气象卫星数据国家级站和省级用户接收站,且移动终端随机移动的特点,这两种业务实际运行中无法兼容共用1695~1710 MHz频段。  相似文献   
999.
聂晶  张琳  尹红刚  喻阳  赵延安  方箭 《气象科技》2017,45(6):968-973
1695~1710 MHz频段是我国静止轨道和太阳同步轨道风云气象卫星广泛使用的空对地方向数据传输频段。2015年世界无线电大会(WRC-15)把这一频段作为国际移动通信系统(IMT)在全球范围内寻求新频谱划分的候选频段。为了保护气象卫星的频谱资源不受到潜在的IMT系统干扰,并探知风云气象卫星和IMT系统基站的同频共用情况,本文结合IMT基站和风云气象卫星数据接收站的链路参数,建立干扰模型,分别仿真分析了IMT基站对FY-3号气象卫星和FY-4号气象卫星数据接收的干扰情况。在我国城市和郊区布设了大量的国际级和省级气象卫星用户接收站的情况下,研究结果表明IMT基站和风云气象卫星接收站间距离很难满足隔离距离的要求,因此不建议IMT基站和气象卫星共用1695~1710 MHz频段。  相似文献   
1000.
本文基于一个水平分辨率为50 km的区域气候模式RegCM4(Regional Climate Model,version 4.0)的模拟与预估结果,对我国汛期江淮暴雨低涡在气候变化背景下的统计特征与合成结构进行分析,进一步对两种温室排放情景下未来中国汛期的江淮暴雨低涡特征进行预估。结果表明:RegCM4模式对环境要素及低涡都具有一定的模拟能力,低涡的伸展高度、生命期及暴雨位置模拟结果与观测较为接近,但模拟的低涡个数、最大暖区高度以及温、湿要素分布均比实际略偏低,而风速和低涡的强度模拟则偏强;在未来两种温室排放情景预估方面, RCP4.5(Representative Concentration Pathways,简称RCP)典型浓度排放情景下,暴雨低涡数量比例减少,强度减弱,但低涡发展高度仍以850 hPa为主,生命期多为2 d以内,低涡雨区分布及最大暖区高度均与历史时段相近;RCP8.5情景下,暴雨低涡比例明显大于RCP4.5情景,低涡发展高度以700 hPa为主,生命期达3 d的增多,强度增强,最大暖区厚度范围显著伸展。两种情景下均有低涡中温度锋区减弱,而湿度锋区增强,但RCP8.5情景减弱与增强更显著,显示更高的温室气体排放将导致未来出现更强的暴雨低涡,造成伴随暴雨的低涡灾害性天气的增加,因此应进一步深化对低涡暴雨灾害性天气发展趋势的研究。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号