首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   6篇
测绘学   2篇
大气科学   4篇
地球物理   22篇
地质学   9篇
海洋学   5篇
天文学   1篇
自然地理   3篇
  2021年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1982年   1篇
  1974年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
21.
Baseflow separation is important for obtaining critical parameters for hydrological models. As measuring the baseflow component directly is difficult, various analytical and empirical baseflow separation methods have been developed and tested. The recursive digital filter (RDF) method is commonly used for baseflow separation due to its simplicity and low data requirement. However, parameters used in the RDF method are often determined arbitrarily, resulting in high uncertainty of the estimated baseflow rate. A more accurate method is the conductivity mass balance (CMB) method, which is established based on the differences in physical processes between baseflow and surface runoff. In this research, the output of the CMB method was used to calibrate the parameters of an RDF model, and the calibrated RDF model was used to estimate monthly, seasonal and annual baseflow rate and baseflow index for the past 19 years using streamflow discharge records. The characteristics of the baseflow hydrographs were found to be consistent with the hydrological and hydrogeological conditions of the research area. Research results indicated that the accuracy of the RDF model has been greatly enhanced after being calibrated with the CMB method so that the RDF model can provide more reliable baseflow separation results for a long‐term study. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
22.
Urban growth and population growth are used in numerous models to determine their potential impacts on both the natural and the socio-economic systems. Cellular automata (CA) land-use models became popular for urban growth modelling since they predict spatial interactions between different land uses in an explicit and straightforward manner. A common deficiency of land-use models is that they only deal with abstract categories, while in reality, several activities are often hosted at one location (e.g. population, employment, agricultural yield, nature…). Recently, a multiple activity-based variable grid CA model was proposed to represent several urban activities (population and economic activities) within single model cells. The distance-decay influence rules of the model included both short- and long-distance interactions, but all distances between cells were simply Euclidean distances. The geometry of the real transportation system, as well as its interrelations with the evolving activities, were therefore not taken into account. To improve this particular model, we make the influence rules functions of time travelled on the transportation system. Specifically, the new algorithm computes and stores all travel times needed for the variable grid CA. This approach provides fast run times, and it has a higher resolution and more easily modified parameters than the alternative approach of coupling the activity-based CA model to an external transportation model. This paper presents results from one Euclidean scenario and four different transport network scenarios to show the effects on land-use and activity change in an application to Belgium. The approach can add value to urban scenario analysis and the development of transport- and activity-related spatial indicators, and constitutes a general improvement of the activity-based CA model.  相似文献   
23.
Thousands of buildings were damaged by the devastating Chi‐Chi earthquake on September 21, 1999. Of all the public buildings, school buildings are the most vulnerable to earthquake damage, and the retrofitting of existing school buildings becomes a stringent issue. In addition to cost effectiveness, the impact of retrofitting methods on the functions of the school buildings needs to be considered. This paper therefore proposes the retrofitting of school buildings by adding sandwich columns onto partition brick walls. The sandwich column is divided into two parts and is added to the two sides of the partition brick wall held with pairs of U‐shaped bars. The retrofit does not require the removal of windows or doors in the longitudinal direction making the proposed method cost effective and minimizes the impact on the function of the school buildings. Five full‐scale specimens without and with retrofitting were designed and fabricated for testing based on the partition brick wall frames of the existing school buildings. The specimens were subjected to cyclic loading in the out‐of‐plane direction through a loading frame so that the columns deformed with double curvatures. The experimental results verified the feasibility of the proposed retrofit method. The data showed that the lateral strength of the retrofitted specimen doubled that which was not and that the residual strength of the retrofitted specimen was just as high as the ultimate strength of the specimen without retrofitting. The analytical results in lateral strength yielded conservative figures compared with experimental measurements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
24.
25.
We present the characteristics of the dust comae of two comets, 126P/IRAS, a member of the Halley family (a near-isotropic comet), and 2P/Encke, an ecliptic comet. We have primarily used mid- and far-infrared data obtained by the ISOPHOT instrument aboard the Infrared Space Observatory (ISO) in 1996 and 1997, and mid-infrared data obtained by the SPIRIT III instrument aboard the Midcourse Space Experiment (MSX) in 1996. We find that the dust grains emitted by the two comets have markedly different thermal and physical properties. P/IRAS's dust grain size distribution appears to be similar to that of fellow family member 1P/Halley, with grains smaller than 5 microns dominating by surface area, whereas P/Encke emits a much higher fraction of big (20 μm and higher) grains, with the grain mass distribution being similar to that which is inferred for the interplanetary dust population. P/Encke's dearth of micron-scale grains accounts for its visible-wavelength classification as a “gassy” comet. These conclusions are based on analyses of both imaging and spectrophotometry of the two comets; this combination provides a powerful way to constrain cometary dust properties. Specifically, P/IRAS was observed preperihelion while 1.71 AU from the Sun, and seen to have a 15-arcmin long mid-infrared dust tail pointing in the antisolar direction. No sunward spike was seen despite the vantage point being nearly in the comet's orbital plane. The tail's total mass at the time was about 8×109 kg. The spectral energy distribution (SED) is best fit by a modified greybody with temperature T=265±15 K and emissivity ε proportional to a steep power law in wavelength λ: ελα, where α=0.50±0.20(2σ). This temperature is elevated with respect to the expected equilibrium temperature for this heliocentric distance. The dust mass loss rate was between 150-600 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 3.3, and the albedo of the dust was 0.15±0.03. Carbonaceous material is depleted in the comet's dust by a factor of 2-3, paralleling the C2 depletion in P/IRAS's gas coma. P/Encke, on the other hand, observed while 1.17 AU from the Sun, had an SED that is best fit by a Planck function with T=270±15 K and no emissivity falloff. The dust mass loss rate was 70-280 kg/s (95% confidence), the dust-to-gas mass loss ratio was about 2.3, and the albedo of the dust was about 0.06±0.02. These conclusions are consistent with the strongly curved dust tail and bright dust trail seen by Reach et al. (2000; Icarus 148, 80) in their ISO 12-μm imaging of P/Encke. The observed differences in the P/IRAS and P/Encke dust are most likely due to the less evolved and insolated state of the P/IRAS nuclear surface. If the dust emission behavior of P/Encke is typical of other ecliptic comets, then comets are the major supplier of the interplanetary dust cloud.  相似文献   
26.
Flow diversion terraces (FDT) are commonly used beneficial management practice (BMP) for soil conservation on sloped terrain susceptible to water erosion. A simple GIS‐based soil erosion model was designed to assess the effectiveness of the FDT system under different climatic, topographic, and soil conditions at a sub‐basin level. The model was used to estimate the soil conservation support practice factor (P‐factor), which inherently considered two major outcomes with its implementation, namely (1) reduced slope length, and (2) sediment deposition in terraced channels. A benchmark site, the agriculture‐dominated watershed in northwestern New Brunswick (NB), was selected to test the performance of the model and estimated P‐factors. The estimated P‐factors ranged from 0·38–1·0 for soil conservation planning objectives and ranged from 0·001 to 0·45 in sediment yield calculations for water‐quality assessment. The model estimated that the average annual sediment yield was 773 kg ha?1 yr ?1 compared with a measured value of 641 kg ha?1 yr?1. The P‐factors estimated in this study were comparable with predicted values obtained with the revised universal soil loss equation (RUSLE2). The P‐factors from this study have the potential to be directly used as input in hydrological models, such as the soil and water assessment tool (SWAT), or in soil conservation planning where only conventional digital elevation models (DEMs) are available. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
27.
An essential part of hydrological research focuses on hydrological extremes, such as river peak flows and associated floods, because of their large impact on economy, environment, and human life. These extremes can be affected by potential future environmental change, including global climate change and land cover change. In this paper, the relative impact of both climate change and urban expansion on the peak flows and flood extent is investigated for a small‐scale suburban catchment in Belgium. A rainfall‐runoff model was coupled to a hydrodynamic model in order to simulate the present‐day and future river streamflow. The coupled model was calibrated based on a series of measured water depths and, after model validation, fed with different climate change and urban expansion scenarios in order to evaluate the relative impact of both driving factors on the peak flows and flood extent. The three climate change scenarios that were used (dry, wet winter, wet summer) were based on a statistical downscaling of 58 different RCM and GCM scenario runs. The urban expansion scenarios were based on three different urban growth rates (low, medium, high urban expansion) that were set up by means of an extrapolation of the observed trend of urban expansion. The results suggest that possible future climate change is the main source of uncertainty affecting changes in peak flow and flood extent. The urban expansion scenarios show a more consistent trend. The potential damage related to a flood is, however, mainly influenced by land cover changes that occur in the floodplain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
28.
29.
A comprehensive model for the prediction of concentration fluctuations in plumes dispersing in the complex and highly disturbed wind flows in an urban environment is formulated. The mean flow and turbulence fields in the urban area are obtained using a Reynolds-averaged Navier-Stokes (RANS) flow model, while the standard k-ϵ turbulence model (k is the turbulence kinetic energy and ϵ is the viscous dissipation rate) is used to close the model. The RANS model provides a specification of the velocity statistics of the highly disturbed wind flow in the urban area, required for the solution of the transport equations for the mean concentration and concentration variance (both of which are formulated in the Eulerian framework). A physically-based formulation for the scalar dissipation time scale t d , required for the closure of the transport equation for , is presented. This formulation relates t d to an inner time scale corresponding to “internal” concentration fluctuation associated with relative dispersion, rather than an outer time scale associated with the entire portion of the fluctuation spectrum. The two lowest-order moments of concentration ( and ) are used to determine the parameters of a pre-chosen functional form for the concentration probability density function (clipped-gamma distribution). Results of detailed comparisons between a water-channel experiment of flow and dispersion in an idealized obstacle array and the model predictions for mean flow, turbulence kinetic energy, mean concentration, concentration variance, and concentration probability density function are presented.  相似文献   
30.
A modified k- model is used for the simulation of the mean wind speed and turbulence for a neutrally-stratified flow through and over a building array, where the array is treated as a porous medium with the drag on the unresolved buildings in the array represented by a distributed momentum sink. More specifically, this model is based on time averaging the spatially averaged Navier–Stokes equation, in which the effects of the obstacle-atmosphere interaction are included through the introduction of a distributed mean-momentum sink (representing drag on the unresolved buildings in the array). In addition, closure of the time-averaged, spatially averaged Navier–Stokes equation requires two additional prognostic equations, namely one for the time-averaged resolved-scale kinetic energy of turbulence,, and another for its dissipation rate, . The performance of the proposed model and some simplified versions derived from it is compared with the spatially averaged, time-mean velocity and various spatially averaged Reynolds stresses diagnosed from a high-resolution computational fluid dynamics (CFD) simulation of the flow within and over an aligned array of sharp-edged cubes with a plan area density of 0.25. Four different methods for diagnosis of the drag coefficient CDfor the aligned cube array, required for the volumetric drag force representation of the cubes, are investigated here. We found that the model predictions for mean wind speed and turbulence in the building array were not sensitive to the differing treatments of the source and sink terms in the and equations (e.g., inclusion of only the `zeroth-order' approximation for the source/sink terms compared with inclusion of a higher-order approximation for the source/sink terms in the and equations), implying that the higher-order approximations of these source/sink terms did not offer any predictive advantage. A possible explanation for this is the utilization of the Boussinesq linear stress–strain constitutive relation within the k– modelling framework, whose implicit omission of any anisotropic eddy-viscosity effects renders it incapable of predicting any strong anisotropy of the turbulence field that might exist in the building array.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号