首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   16篇
  国内免费   2篇
测绘学   7篇
大气科学   44篇
地球物理   104篇
地质学   129篇
海洋学   30篇
天文学   27篇
自然地理   37篇
  2021年   6篇
  2020年   7篇
  2019年   6篇
  2018年   10篇
  2017年   9篇
  2016年   14篇
  2015年   6篇
  2014年   12篇
  2013年   16篇
  2012年   14篇
  2011年   15篇
  2010年   15篇
  2009年   17篇
  2008年   11篇
  2007年   19篇
  2006年   16篇
  2005年   11篇
  2004年   9篇
  2003年   10篇
  2002年   13篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   8篇
  1996年   3篇
  1995年   2篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   7篇
  1983年   8篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1977年   6篇
  1976年   3篇
  1975年   5篇
  1974年   3篇
  1973年   4篇
  1970年   2篇
  1899年   3篇
排序方式: 共有378条查询结果,搜索用时 31 毫秒
21.
Shrimp culture technology has resulted in development of a major shrimp farming industry worldwide. Without the shrimp farming industry, increasing demands for shrimp by consumers could not be met, resulting in increased pressure on wild shrimp resources. Unfortunately, there are realized and potential adverse environmental effects on estuarine ecosystems as a result of shrimp farming. The effects can be categorized as wetland destruction for construction of shrimp farms, hypernutrification of estuarine ecosystems by shrim pond effluent, “biological pollution” of native shrimp stocks through escapement of aquaculture stocks, water use and entrainment of estuarine biota, and impacts of shrimp farm chemicals on estuarine systems. While the shrimp farming industry in the United States is small, the United States is effectively addressing all the realized and potential environmental impacts through regulation and research at the federal and state levels. Areas of regulation and research include stringent prohibitions on wetland destruction, regulation of effluents and support of research to eliminate and/or reduce effluents, escapement prevention technology and development of high-health stocks, minimizing entrainment of estuarine biota through water conservation and screening technology, and regulation of chemical use in the shrimp farming industry and support of research on shrimp pathology and environmentally safe disease control. Work is still in progress and not all problems have been resolved to the complete satisfaction of shrimp farmers and estuarine conservationists. However, the situation in the United States should serve as a model of how to encourage sustainable economic development through commercial shrimp farming while abating adverse environmental impacts on estuarine systems. To further improve the situation, the development and adoption of “best management practices” for shrimp aquaculture are recommended.  相似文献   
22.
In the Everglades of southern Florida, several species of spring- and winter-nesting wading birds (Ciconiiformes) often abandon their nests in response to periods of cold or wet and windy weather. Using stepwise logistic regression of a variety of hydrologic and meteorologic variables on the probability of great egret nest failure, we found that cold temperatures and high wind speeds were most closely associated with nest failure in the Everglades. Water level fluctuation was not a significant correlate of failure. Quantitative visual surveys in the field showed that even moderate cooling events (15°C minimum daily temperature) dramatically altered the observed densities of marsh fishes. In controlled conditions in the laboratory, we observed centrarchid, poeciliid, and cyprinodontid fishes during normal high (19–23°C) and simulated cold snap (8–11°C) temperatures. At low temperatures, the fishes exhibited reduced activity, sought refuge by hiding in vegetation and/or substrate, and fled our approach to the tank at much greater distances. Threshold temperatures for these behaviors varied considerably between the laboratory (9–11°C) and field (15–20°C), and may be explained by differences in the previous thermal experience of the two groups of fishes. We hypothesize that the temperature-induced scarcity of fishes during spring cold snaps is an important cause of disruption of nesting for several species of wading birds in the Everglades.  相似文献   
23.
24.
Measurements of the structure of the Convective Boundary Layer (CBL) were made from the ground and from the ARAT aircraft with a backscattering lidar during the preliminary phase of the French project LEANDRE. A numerical model of Mie theory diffusion was used to determine a theoretical profile of the extinction coefficient, as a function of relative humidity. Comparisons between theoretical and measured profiles were made. Good agreement was found, which confirms that the variation of the extinction coefficient in the CBL is primarily controlled by the relative humidity. This paper also presents a detailed analysis of the small-scale structure of the CBL. The normalized length and number of thermals are estimated. Results are in agreement with previousin-situ measurements. An analysis of the bidimensional cross-section of the extinction coefficient shows that this coefficient permits one to retrieve more quantitative information than the range-corrected signal, as the fractions of entrained air and surface-layer air at a given altitude.  相似文献   
25.
26.
A “snap shot” survey of the Mississippi estuary was made during a period of low river discharge, when the estuarine mixing zone was within the deltaic channels. Concentrations of H+, Ca2+, inorganic phosphorus and inorganic carbon suggest that the waters of the river and the low salinity (<5‰) portion of the estuary are near saturation with respect to calcite and sedimentary calcium phosphate. An input of oxidized nitrogen species and N2O was observed in the estuary between 0 and 4‰ salinity. The concentrations of dissolved NH4 + and O2, over most of the estuary, appeared to be influenced by decomposition of terrestrial organic matter in bottom sediments. The estuarine bottom also appears to be a source of CH4 which has been suggested to originate from petroleum shipping and refining operations. Estuarine mixing with offshore Gulf waters was the dominant influence on distributions of dissolved species over most of the estuary (i.e., from salinities >5‰). The phytoplankton abundance (measured as chlorophylla) increased as the depth of the mixed layer decreased in a manner consistent with that expected for a light-limited ecosystem. Fluxes of NO3 ?+NO2 ? and soluble inorganic phosphorus to the Gulf of Mexico were estimated to be 3.4±0.2×103 g N s?1 and 1.9±0.2 g P s?1 respectively, at the time of this study.  相似文献   
27.
28.
A laboratory study was undertaken to determine the transport and deposition rate of suspended particles in columns of saturated porous media (gravel and glass beads), where the porous media were subjected to steady-state flow. Silt particles with a mode of 14 μm diameter (used as the suspended particles) and fluorescein (as the conservative tracer) were injected into the columns in short pulses. The breakthrough curves were competently described with the analytical solution of a convection–dispersion equation with a first-order deposition rate. The experiments were performed using different flow rates. The suspended particle size distribution, the porous media, and the flow rates themselves were the main factors retained in this study to investigate the mechanisms governing the transport and deposition kinetics in detail. The results showed the existence of a flow rate, beyond which suspended particles travel faster than the conservative tracer. A decrease of the deposition rate of suspended particles beyond a critical flow velocity was also observed. Such behaviour led to consideration of the couple hydrodynamic-gravity forces at high flow rates. As the hydrodynamic force increases, particle deposition rates are reduced due to the effect of hydrodynamic forces inhibiting the deposition.  相似文献   
29.
This work proposes a complete method for automatic inversion of data from hydraulic interference pumping tests based on both homogeneous and fractal dual-medium approaches. The aim is to seek a new alternative concept able to interpret field data, identify macroscopic hydraulic parameters and therefore enhance the understanding of flow in porous fractured reservoirs. Because of its much contrasted sensitivities to parameters, the dual-medium approach yields an ill-posed inverse problem that requires a specific optimization procedure including the calculation of analytical sensitivities and their possible re-scaling. Once these constraints are fulfilled, the inversion proves accurate, provides unambiguous and reliable results. In the fractal context inverting several drawdown curves from different locations at the same time reveals more accurate. Finally, hydraulic parameters drawn from inversion should be taken into account to improve in various situations the conditioning of up-scaled flow in fractured rocks.  相似文献   
30.
A comprehensive study of fine sediment transport in the macrotidal Seine estuary has been conducted, including observations of suspended particulate matter (SPM), surficial sediment, and bathymetric data, as well as use of a three dimensional mathematical model. Tide, river regime, wind, and wave forcings are accounted. The simulated turbidity maximum (TM) is described in terms of concentration and location according to tidal amplitude and the discharge of the Seine River. The TM is mainly generated by tidal pumping, but can be concentrated or stretched by the salinity front. The computed deposition patterns depend on the TM location and are seasonally dependent. The agreement with observations is reasonable, although resuspension by waves may be overestimated. Although wave resuspension is likely to increase the TM mass, it generally occurs simultaneously with westerly winds that induce a transverse circulation at the mouth of the estuary and then disperse the suspended material. The resulting effect is an output of material related to wind and wave events, more than to high river discharge. The mass of the computed TM remains stable over 6 months and independent of the river regime, depending mainly on the spring tide amplitude. Computed fluxes at different cross-sections of the lower estuary show the shift to the TM according to the river flow and point out the rapidity of the TM adjustment to any change of river discharge. The time for renewing the TM by riverine particles has been estimated to be one year.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号