首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33718篇
  免费   6195篇
  国内免费   8109篇
测绘学   2642篇
大气科学   7272篇
地球物理   8409篇
地质学   16143篇
海洋学   3941篇
天文学   1411篇
综合类   3807篇
自然地理   4397篇
  2024年   98篇
  2023年   438篇
  2022年   1472篇
  2021年   1629篇
  2020年   1353篇
  2019年   1559篇
  2018年   1806篇
  2017年   1687篇
  2016年   1942篇
  2015年   1700篇
  2014年   2045篇
  2013年   1999篇
  2012年   1956篇
  2011年   2060篇
  2010年   2116篇
  2009年   2028篇
  2008年   1868篇
  2007年   1775篇
  2006年   1410篇
  2005年   1316篇
  2004年   989篇
  2003年   997篇
  2002年   955篇
  2001年   997篇
  2000年   1161篇
  1999年   1556篇
  1998年   1277篇
  1997年   1201篇
  1996年   1114篇
  1995年   964篇
  1994年   847篇
  1993年   774篇
  1992年   595篇
  1991年   479篇
  1990年   348篇
  1989年   324篇
  1988年   296篇
  1987年   168篇
  1986年   153篇
  1985年   97篇
  1984年   110篇
  1983年   81篇
  1982年   70篇
  1981年   61篇
  1980年   36篇
  1979年   33篇
  1978年   12篇
  1977年   12篇
  1976年   8篇
  1958年   31篇
排序方式: 共有10000条查询结果,搜索用时 593 毫秒
141.
前河金矿区位于华北地台南缘,赋存在中元古界熊耳群安山岩和英安岩中,矿体受断裂破碎带控制。含矿热液在迁移过程中与围岩发生了广泛的流体-岩石反应而引起热液蚀变。本区石英中有4种类型的流体包裹体,均一温度范围为145~331℃,其中含CO2包裹体的完全均一温度主要分布在中-高温区。成矿流体的密度和压力变化范围分别是0.68~0.94g/cm3和(367.01~896.55)×105Pa。金大量沉淀成矿时的流体特征为:温度213~260℃、密度0.80~0.89g/cm3和压力(502.86~710.57)×105Pa。流体相为SO42->Na >Cl->K 型,CO2/H2O比值及N2、H2S、Ar、C2H6等挥发分的含量明显增高,f(CO2)、f(H2S)、f(CH4)和Eh值增大;f(O2)、f(H2O)和pH值减小。在青磐岩化安山岩的基础上发生的流体-岩石反应是造成本矿床金沉淀成矿的最主要原因。  相似文献   
142.
A survey was conducted in an 11-year recovery mobile dune (RMD11) and a 20-year recovery mobile dune (RMD20), in Horqin Sandy Land, Northern China, to determine plant distribution at the mobile dune scale and its relevance to soil properties and topographic features. The results showed that (1) vegetation cover and species number increased from dune top to bottom in the restoration process of mobile dune; (2) the average value of soil organic C, total N, pH, relative height of sampling site, very fine sand content and soil water contents (40−60 and 60−80 cm) of RMD11 were less than that of RMD20, respectively, and there were significant differences (P < 0.05) between the two dunes; (3) soil resources were redistributed by shrub restoration and relative height of sampling site on dune. The distribution of sand pioneer plant, Agriophyllum squarrosum, was positively related to the relative height of sampling site and soil water content, while that of other herbaceous plants was positively related to soil nutrients in the restoration process of mobile dune. These results suggest that at mobile dune scale, plant distributions are determined by a combination of soil properties and topographic feature. Much effort should be made to preserve the interdune lowland and to improve the level of soil nutrients on mobile dune.  相似文献   
143.
Occurrence and evolution of the Xiaotangshan hot spring in Beijing, China   总被引:1,自引:0,他引:1  
Thermal groundwater occurs in bedrock aquifers consisting of the dolomite of the Wumishan Group of the Jixianin System and the Cambrian carbonate in the Xiaotangshan geothermal field near the northern margin of the North China Plain, China. The hot water in the geothermal field of basin-type discharges partly in the form of the Xiaotangshan hot spring under natural conditions. The hot water has TDS of less than 600 mg/L and is of Na·Ca-HCO3 type. The geothermal water receives recharge from precipitation in the mountain area with elevation of about 500 m above sea level to the north of the spring. Thermal groundwater flows slowly south and southeast through a deep circulation with a residence time of 224 years estimated with the Ra–Rn method. The Xiaotangshan hot spring dried up in the middle of the 1980s owing to the increasing withdrawal of the hot water in the geothermal field in the past decades. The water level of the geothermal system still falls continually at an annual average rate of about 2 m, although water temperature changes very little, indicating that the recharge of such a geothermal system of basin-type is limited. Over-exploitation has a dramatic impact on the geothermal system, and reduction in exploitation and reinjection are required for the sustainable usage of the hot water.  相似文献   
144.
In this paper, we analysed the monitored data from nine groundwater-monitoring transects in the lower reaches of Tarim River during the five times of stream water deliveries to the river transect where the stream flow ceased. The results showed that the groundwater depth in the lower reaches of Tarim River rose from −9.30 m before the conveyances to −8.17 and −6.50 m after the first and second conveyances, −5.81 and −6.00 m after the third and fourth the conveyance, and −4.73 m after the fifth. The horizontal extent of groundwater recharge was gradually enlarged along both sides of the channel of conveyance, i.e., from 250 m in width after the first conveyance to 1,050 m away from the channel after the fourth delivery. With the rising groundwater level, the concentrations of major anions Cl, SO42− and cations Ca2+, Mg2+, Na+, as well as total dissolved solids (TDS) in groundwater underwent a significant change. The spatial variations in groundwater chemistry indicated that the groundwater chemistry at the transect near Daxihaizi Reservoir changed earlier than that farther from it. In the same transect, the chemical variations were earlier in the monitoring well close to watercourse than that farther away from the stream. In general, the concentration of the major ions and TDS at each monitoring well increased remarkably when the water delivery started, and decreased with the continued water delivery, and then increased once again at the end of the study period. Hence, the whole study period may be divided into three stages: the initial stage, the intermediate stage and the later stage. According to the three stages of groundwater chemistry reaction to water delivery and the relationships between groundwater chemical properties and groundwater depths, we educe that under the situation of water delivery, the optimum groundwater depth in the lower reaches of the Tarim River should be −5 m.  相似文献   
145.
An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40–80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.  相似文献   
146.
Many cities around the world are developed at alluvial fans. With economic and industrial development and increase in population, quality and quantity of groundwater are often damaged by over-exploitation in these areas. In order to realistically assess these groundwater resources and their sustainability, it is vital to understand the recharge sources and hydrogeochemical evolution of groundwater in alluvial fans. In March 2006, groundwater and surface water were sampled for major element analysis and stable isotope (oxygen-18 and deuterium) compositions in Xinxiang, which is located at a complex alluvial fan system composed of a mountainous area, Taihang Mt. alluvial fan and Yellow River alluvial fan. In the Taihang mountainous area, the groundwater was recharged by precipitation and was characterized by Ca–HCO3 type water with depleted δ18O and δD (mean value of −8.8‰ δ18O). Along the flow path from the mountainous area to Taihang Mt. alluvial fan, the groundwater became geochemically complex (Ca–Na–Mg–HCO3–Cl–SO4 type), and heavier δ18O and δD were observed (around −8‰ δ18O). Before the surface water with mean δ18O of −8.7‰ recharged to groundwater, it underwent isotopic enrichment in Taihang Mt. alluvial fan. Chemical mixture and ion exchange are expected to be responsible for the chemical evolution of groundwater in Yellow River alluvial fan. Transferred water from the Yellow River is the main source of the groundwater in the Yellow River alluvial fan in the south of the study area, and stable isotopic compositions of the groundwater (mean value of −8.8‰ δ18O) were similar to those of transferred water (−8.9‰), increasing from the southern boundary of the study area to the distal end of the fan. The groundwater underwent chemical evolution from Ca–HCO3, Na–HCO3, to Na–SO4. A conceptual model, integrating stiff diagrams, is used to describe the spatial variation of recharge sources, chemical evolution, and groundwater flow paths in the complex alluvial fan aquifer system.  相似文献   
147.
Concentrations of trace elements and heavy metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Se, Sr, V and Zn) in the Danjiangkou Reservoir, the water source area of the Middle Route of China’s interbasin South to North Water Transfer Project, were analyzed using an Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and compared with the national and international standards for drinking water. The results indicated that concentrations of As, Pb, Sb and Se in the Reservoir exceeded the standards and they would pose health risk for residents in the region and the water receiving areas of the interbasin water transfer project. Spatial and temporal variability of the trace elements and heavy metals in the Reservoir implies their mixed sources of natural processing and anthropogenic activities in the upper drainage of the Reservoir. The research results would help develop water resource management and conservation strategy for the interbasin water transfer project.  相似文献   
148.
Unconsolidated sand, gravel and clay deposits near Beihai and in the Leizhou Peninsula in southern China form an unconfined aquifer, aquitard and a confined aquifer. Water and soil samples were collected from the two aquifers in the coastal Beihai area for the determination of chemical compositions, minerals and soluble ions. Hydrogeochemical modeling of three flow paths through the aquitard are carried out using PHREEQC to determine water–rock interactions along the flow paths. The results indicate that the dissolution of anorthite, fluorite, halite, rhodochrosite and CO2, and precipitation of potash feldspar and kaolinite may be occurring when groundwater leaks through the aquitard from the unconfined aquifer to the confined aquifer. Cation exchanges between Na and Ca can also happen along the flow paths.  相似文献   
149.
New chronological, geochemical, and isotopic data are reported for Triassic (219–236 Ma) adakite-magnesian andesite-Nb-enriched basaltic rock associations from the Tuotuohe area, central Qiangtang terrane. The adakites and magnesian andesites are characterized by high Sr/Y (25–45), La/Yb (14–42) and Na2O/K2O (12–49) ratios, high Al2O3 (15.34–18.28 wt%) and moderate to high Sr concentrations (220–498 ppm) and εND (t) (+0.86 to +1.21) values. Low enrichments of Th, Rb relative to Nb, and subequal normalized Nb and La contents, and enrichments of light rare earth elements combine to distinguish a group of Nb-enriched basaltic rocks (NEBs). They have positive εND (t) (+2.57 to +5.16) values. Positive correlations between Th, La and Nb and an absence of negative Nb anomalies on mantle normalized plots indicate the NEBs are products of a mantle source metasomatized by a slab melt rather than by hydrous fluids. A continuous compositional variation between adakites and magnesian andesites confirms slab melt interaction with mantle peridotite. The spatial association of the NEBs with adakites and magnesian andesites define an “adakitic metasomatic volcanic series” recognized in many demonstrably subduction-related environments (e.g., Mindanao arc, Philippines; Kamchatka arc, Russia; and southern Baja California arc, Mexico). The age of the Touhuohe suite, and its correlation with Triassic NEB to the north indicates that volcanism derived from subduction-modified mantle was abundant prior to 220 Ma in the central Qiangtang terrane.  相似文献   
150.
A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from −2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo (αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ30Si value from roots to stem, including larger ratio of dissolved H4SiO4 to precipitated SiO2 in roots than in stem. There is a positive correlation between the δ30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor (αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO2 contents and δ30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号