首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29507篇
  免费   1172篇
  国内免费   2174篇
测绘学   1717篇
大气科学   3133篇
地球物理   5913篇
地质学   14081篇
海洋学   1655篇
天文学   1898篇
综合类   2723篇
自然地理   1733篇
  2024年   21篇
  2023年   81篇
  2022年   237篇
  2021年   261篇
  2020年   217篇
  2019年   249篇
  2018年   4961篇
  2017年   4220篇
  2016年   2841篇
  2015年   519篇
  2014年   407篇
  2013年   320篇
  2012年   1265篇
  2011年   3019篇
  2010年   2283篇
  2009年   2637篇
  2008年   2171篇
  2007年   2622篇
  2006年   271篇
  2005年   431篇
  2004年   564篇
  2003年   561篇
  2002年   427篇
  2001年   227篇
  2000年   229篇
  1999年   263篇
  1998年   245篇
  1997年   181篇
  1996年   200篇
  1995年   143篇
  1994年   145篇
  1993年   152篇
  1992年   123篇
  1991年   68篇
  1990年   54篇
  1989年   48篇
  1988年   41篇
  1987年   21篇
  1986年   24篇
  1985年   11篇
  1984年   10篇
  1983年   8篇
  1982年   9篇
  1981年   29篇
  1980年   22篇
  1978年   2篇
  1977年   1篇
  1976年   6篇
  1975年   1篇
  1958年   4篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
991.
Soil microbial communities are primarily regulated by environmental temperature. Our study investigated the effects of global warming on soil microbial community composition as measured via phospholipid fatty acid (PLFA) analysis and soil chemical characteristics in relation to soil depth in a dragon spruce plantation and a spruce-fir-dominated natural forestin the Eastern Tibetan Plateau. Open-top chambers were utilized to increase the soil and air temperature. Soil samples were collected from the 0-10 cm, 10-20 cm, and 20-30 cm layers after a 4-year warming. Our results showed that the soil microbial community and the contents of TC (Total carbon), TN (Total nitrogen), NO 3 - , and NH 4 + responded differently to warming in the two contrasting forests, especially at the 0-10 cm soil depth. Warming increased soil microbial biomass at the 0-20 cm depth of soil in natural forest but reduced it at the 0-10 cm depth ofsoil in the plantation. In contrast, the TC and TN contents were reduced in most soil layers of a natural forest but increased in all of the soil layers of the plantation under warming conditions. This result suggested that the effects of warming on soil microbial community and soil C and N pools would differ according to soil depth and forest types; thus, the two contrasting forests would under go differing changes following the future climate warming in this region.  相似文献   
992.
993.
The conversion of subalpine forests into grasslands for pastoral use is a well-knownphenomenon, although for most mountain areas the timing of deforestation has not been determined. The presence of charcoal fragments in soil profiles affected by shallow landsliding enabled us to date the occurrence of fires and the periods of conversion ofsubalpine forest into grasslands in the Urbión Mountains, Iberian Range, Spain. We found that the treeline in the highest parts of the northwestern massifs of the Iberian Range(the Urbión, Demanda, Neila, and Cebollera massifs) is currently between 1500 and 1600 m a.s.l., probably because of pastoral use of the subalpine belt, whereas in the past it would have reached almost the highest divides(at approximately 2100–2200 m a.s.l.). The radiocarbon dates obtained indicate that the transformation of the subalpine belt occurred during the Late Neolithic, Chalcolithic, Bronze Age, Iron Age, and Middle Ages. Forest clearing was probably moderate during fires prior to the Middle Ages, as the small size of the sheep herds and the local character of the markets only required small clearings, and therefore more limited fires. Thus, it is likely that the forest recovered burnt areas in a few decades; this suggests the management of the forest and grasslands following a slash-andburn system. During the Middle and Modern Ages deforestation and grassland expansion affected most of the subalpine belt and coincided with the increasing prevalence of transhumance, as occurred in other mountains in the Iberian Peninsula(particularly the Pyrenees). Although the occurrence of shallow landslides following deforestation between the Neolithic and the Roman Period cannot be ruled out, the most extensive shallow landsliding processes would have occurred from the Middle Ages until recent times.  相似文献   
994.
Climate affects Picea crassifolia growth and climate change will lead to changes in the climate–growth relationship (i.e., the “divergence” phenomenon). However, standardization methods can also change the understanding of such a relationship. We tested the stability of this relationship by considering several variables: 1) two periods (1952–1980 and 1981–2009), 2) three elevations (2700, 3000, and 3300 m), and 3) chronologies detrended using cubic splines with two different flexibilities. With increasing elevation, the climatic factor limiting the radial growth of Picea crassifolia shifted from precipitation to temperature. At the elevation of 2700 m, the relationship between radial growth and mean temperature of the previous December changed so that the more flexible spline had a greater precipitation signal. At the elevation of 3000 m, positive correlation of radial growth with mean temperature and precipitation in September of the previous year became more significant. At the elevation of 3300 m, positive correlation between radial growth and precipitation of the current summer and the previous spring and autumn was no longer significant, whereas the positive correlation between radial growth and temperature of the current spring and summer strengthened. The detrending with the most flexible spline enhanced the precipitation signal at 2700 m, while that with the least flexible spline enhanced the temperature signal at 3300 m. All results indicated that the divergence phenomenon was affected by the climatic signals in the chronologies and that it was most dependent on the detrending method. This suggests it is necessary to select a suitable spline bootstrap for studies of growth divergence phenomena.  相似文献   
995.
The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.  相似文献   
996.
Bedload governs riverbed channel variations and morphology, it is necessary to determine bedload discharge through an arbitrary cross section in a mountain river. A new system with submerged load cells has been developed to directly measure bedload discharge. The system consists of: (1) an iron box which is 1 m long, 0.5 m wide and 0.1 m in depth, (2) two submerged load cells 0.7 m apart, (3) a pressure sensor and, (4) an electromagnetic velocity meter. This system has been designed to exclude the effect of the hydraulic pressure of water on direct measurements of bedload particle weight. Initial tests in a laboratory were conducted to examine the accuracy of measurements with the system under aerial conditions. The system has been installed in the supercritical flume in Ashi-arai-dani River of the Hodaka Sedimentation Observatory of the Disaster Prevention Research Institute (DPRI) of Kyoto University to obtain bedload discharge under natural conditions. Flume tests were conducted in this channel by artificial supply of uniform sediment particles of several grain sizes. The average velocity of the sediment particles near the bed was estimated using cross-correlation functions for weight waves obtained by the two load cells. Bedload discharge calculations were based on time integration of the product of sediment velocity and sediment weight obtained by the two load cells. This study clarifies the reasons why bedload measurements are difficult, and provides some solutions using the monitoring systems with submerged load cells through the field measurements. Additionally, the applicability of bedload measurement with the submerged load cells is explained based on experimental artificial sediment supply data.  相似文献   
997.
Although information regarding the initiation processes of debris flows is important for the development of mitigation measures,field data regarding these processes are scarce.We conducted field observations of debris-flow initiation processes in the upper Ichinosawa catchment of the Ohya landslide,central Japan.On 19 June 2012,our videocamera monitoring systems recorded the moment of debris-flow initiation on channel deposits(nine surges) and talus slopes(eight surges).The initiation mechanisms of these surges were classified into three types by analyzing the video images: erosion by the surface flow,movement of deposits as a mass,and upward development of the fluid area.The first type was associated with the progress of surface flow from the upper stream on unsaturated channel deposits.The second type was likely caused by an increase in the pore water pressure associated with the rising in the groundwater level in channel deposits;a continuous water supply from the upper stream by the surface flow might have induced this saturation.The third type was associated with changes in the downstream topography caused by erosion.The flow velocity of most surges was less than 3 m s~(-1) and they usually stopped within 100 m from the initiation point.Surges with abundant pore fluid had a higher flow velocity(about 3- 5 m s~(-1)) and could travel for alonger duration.Our observations indicate that the surface flow plays an important role in the initiation of debris flows on channel deposits and talus slopes.  相似文献   
998.
Natural damming of rivers by mass movements is a very common and potentially dangerous phenomena which has been documented all over the world. In this paper, a two-layer model of Savage-Hutter type is presented to simulate the dynamic procedure for the intrusion of landslide into rivers. The two-layer shallow water system is derived by depth averaging the incompressible Navier-Stokes equations with the hydrostatic assumption. A high order accuracy scheme based on the finite volume method is proposed to solve the presented model equations. Several numerical tests are performed to verify the realiability and feasibility of the proposed model. The numerical results indicate that the proposed method can be competent for simulating the dynamic process of landslide intrusion into the river. The interaction effect between both layers has a significant impact on the landslide movement, water fluctuation and wave propagation.  相似文献   
999.
Anthropogenic activities and natural processes are continuously altering the mountainous environment through deforestation, forest degradation and other land-use changes. It is highly important to assess, monitor and forecast forest cover and other land-use changes for the protection and conservation of mountainous environment. The present study deals with the assessment of forest cover and other land-use changes in the mountain ranges of Dir Kohistan in northern Pakistan, using high resolution multi-temporal SPOT-5 satellite images. The SPOT-5 satellite images of years 2004, 2007, 2010 and 2013 were acquired and classified into land-cover units. In addition, forest cover and land-use change detection map was developed using the classified maps of 2004 and 2013. The classified maps were verified through random field samples and Google Earth imagery (Quick birds and SPOT-5). The results showed that during the period 2004 to 2013 the area of forest land decreased by 6.4%, however, area of range land and agriculture land have increased by 22.1% and 2.9%, respectively. Similarly, barren land increased by 1.1%, whereas, area of snow cover/glacier is significantly decreased by 21.3%. The findings from the study will be useful for forestry and landscape planning and can be utilized by the local, provincial and national forest departments; and REDD+ policy makers in Pakistan.  相似文献   
1000.
In order to investigate the effect of a weak intercalation on slope stability, a large-scale shaking table model test was conducted to study the dynamic response of rock slope models with weak intercalation. The dynamic response of the prototype slopes were studied in laboratory with the consideration of law of similitude. The initiation failure was observed in the rock slope model with a counter-tilt thin-weak intercalation firstly, not in the slope model with a horizontal thin-weak intercalation. Furthermore, it was interesting that the fracture site is shifted from crest top to the slope surface near the weak intercalation, which is different with the location of failure position in a normal layered slope. We also discussed the effect of the dip angle and the thickness of weak intercalation on the failure mechanism and instability mode of the layered rock slope. From the experimental result, it was noted that the stability of the slope with a counter-tilt weak intercalation could be worse than that of the other slopes under seismic excitation. The findings showed the difference of failure in slopes with a horizontal and counter weak intercalation, and implicated the further evaluation of failure of layered slopes caused by seismic loads.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号