首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   22篇
  国内免费   3篇
测绘学   7篇
大气科学   26篇
地球物理   76篇
地质学   96篇
海洋学   32篇
天文学   33篇
自然地理   38篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2020年   7篇
  2019年   9篇
  2018年   7篇
  2017年   7篇
  2016年   14篇
  2015年   4篇
  2014年   13篇
  2013年   23篇
  2012年   21篇
  2011年   32篇
  2010年   26篇
  2009年   23篇
  2008年   8篇
  2007年   14篇
  2006年   9篇
  2005年   16篇
  2004年   9篇
  2003年   7篇
  2002年   9篇
  2001年   7篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1996年   4篇
  1994年   5篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有308条查询结果,搜索用时 46 毫秒
301.
Claire Mercer 《Area》1999,31(3):247-258
Summary Non-governmental organizations are increasingly regarded as the development panacea for the 1990s and beyond. This paper critically explores the emerging relations between the state and actors within 'civil society' in Tanzania, and suggests that NGOs may not be able to fulfil the role being foisted upon them. Issues arising at both national and local scales demonstrate that state–society relations are characterized by unequal patterns of participation, which suggest that NGOs are contributing towards the reproduction of inequality  相似文献   
302.
Erosion of hard‐rock coastal cliffs is understood to be caused by a combination of both marine and sub‐aerial processes. Beach morphology, tidal elevation and significant wave heights, especially under extreme storm conditions, can lead to variability in wave energy flux to the cliff‐toe. Wave and water level measurements in the nearshore under energetic conditions are difficult to obtain and in situ observations are rare. Here we use monthly cliff‐face volume changes detected using terrestrial laser scanning alongside beach morphological changes and modelled nearshore hydrodynamics to examine how exposed cliffs respond to changes in extreme wave conditions and beach morphology. The measurements cover the North Atlantic storms of 2013 to 2014 and consider two exposed stretches of coastline (Porthleven and Godrevy, UK) with contrasting beach morphology fronting the cliffs; a flat dissipative sandy beach at Godrevy and a steep reflective gravel beach at Porthleven. Beach slope and the elevation of the beach–cliff junction were found to influence the frequency of cliff inundation and the power of wave–cliff impacts. Numerical modelling (XBeach‐G) showed that under highly energetic wave conditions, i.e. those that occurred in the North Atlantic during winter 2013–2014, with Hs = 5.5 m (dissipative site) and 8 m (reflective site), the combination of greater wave height and steeper beach at the reflective site led to amplified wave run‐up, subjecting these cliffs to waves over four times as powerful as those impacting the cliffs at the dissipative site (39 kWm‐1 compared with 9 kWm‐1). This study highlighted the sensitivity of cliff erosion to extreme wave conditions, where the majority (over 90% of the annual value) of cliff‐face erosion ensued during the winter. The significance of these short‐term erosion rates in the context of long‐term retreat illustrates the importance of incorporating short‐term beach and wave dynamics into geomorphological studies of coastal cliff change. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
303.
Field characterization of a trichloroethene (TCE) source area in fractured mudstones produced a detailed understanding of the geology, contaminant distribution in fractures and the rock matrix, and hydraulic and transport properties. Groundwater flow and chemical transport modeling that synthesized the field characterization information proved critical for designing bioremediation of the source area. The planned bioremediation involved injecting emulsified vegetable oil and bacteria to enhance the naturally occurring biodegradation of TCE. The flow and transport modeling showed that injection will spread amendments widely over a zone of lower‐permeability fractures, with long residence times expected because of small velocities after injection and sorption of emulsified vegetable oil onto solids. Amendments transported out of this zone will be diluted by groundwater flux from other areas, limiting bioremediation effectiveness downgradient. At nearby pumping wells, further dilution is expected to make bioremediation effects undetectable in the pumped water. The results emphasize that in fracture‐dominated flow regimes, the extent of injected amendments cannot be conceptualized using simple homogeneous models of groundwater flow commonly adopted to design injections in unconsolidated porous media (e.g., radial diverging or dipole flow regimes). Instead, it is important to synthesize site characterization information using a groundwater flow model that includes discrete features representing high‐ and low‐permeability fractures. This type of model accounts for the highly heterogeneous hydraulic conductivity and groundwater fluxes in fractured‐rock aquifers, and facilitates designing injection strategies that target specific volumes of the aquifer and maximize the distribution of amendments over these volumes.  相似文献   
304.
305.
This study investigates how catchment properties influence low-flow dynamics. With 496 synthetic models composed of a bedrock and an alluvial aquifer, we systematically assess the impact of the hydraulic conductivity of both lithologies, of the hillslope and of the river slope on catchment dynamics. The physically based hydrogeological simulator HydroGeoSphere is employed, which allows obtaining a range of low-flow indicators. The hydraulic conductivity of the bedrock Kbedrock, a proxy for transmissivity, is the only catchment property exerting an overall control on low flows and explains 60% of the variance of Q95/Q50. The difference in dynamics of catchments with same Kbedrock depends on hillslope gradients and the alluvial aquifer properties. The buffering capacity of the bedrock is mainly related to Kbedrock and the hillslope gradient. We thus propose the dimensionless bedrock productivity index (BPI) that combines these characteristics with the mean net precipitation. For bedrock only models, the BPI explains 82% of the variance of the ratio of Q95 to mean net precipitation. The alluvial aquifer can significantly influence low flows when the bedrock productivity is limited. Although our synthetic catchment setup is simple, it is far more complex than the available analytical approaches or conceptual hydrological models. The direct application of the results to existing catchments requires nevertheless careful consideration of the local geological topographic and climatic conditions. This study provides quantitative insight into the complex interrelations between geology, topography and low-flow dynamics and challenges previous studies which neglect or oversimplify geological characteristics in the assessment of low flows.  相似文献   
306.
One of the key issues associated with the hypothesis of catastrophic subglacial drainage of the Livingstone Lake event is whether flows of such large magnitudes are physically feasible. To explore this issue, a one‐dimensional hydraulic network flow model was developed to investigate the range of peak discharges and associated flow parameters that may have been carried by a tunnel channel network in south‐east Alberta, Canada. This tunnel channel network has been interpreted elsewhere to carry large discharges associated with subglacial meltwater flows because of the convex longitudinal profiles of individual channels. This computational modelling effort draws upon established and verified engineering principles and methods in its application to the hydraulics of this problem. Consequently, it represents a unique and independent approach to investigating the subglacial meltwater hypothesis. Based on the modelling results, it was determined that energy losses resulting from friction limit the maximum peak discharge that can be transported through the tunnel channel network to 107 m3 s−1, which is in reasonable agreement with previous estimates of flood discharges for proposed megafloods. Results show that flow through channels with convex longitudinal profiles occurs when hydraulic head exceeds 910 m (Lost River) and 950 m (Sage Creek) , respectively. These are considerably below the maximum head capable of driving flow through the system of 1360 m, beyond which ice is decoupled from the bed across the pre‐glacial drainage divide. Therefore, it is concluded that these model results support the hypothesis of catastrophic subglacial drainage during the Livingstone Lake event. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
307.
One key feature of our protoplanetary disk that shaped its transformation into a system of planetary bodies was its vast magnetic field. Unique constraints on the properties of this field can be gleaned from paleomagnetic measurements of certain meteorites. Here, we apply this approach to the recent CM chondrite fall Winchcombe with the aim of constructing the most complete and reliable record to date of the behavior of the disk field in the outer solar system. We find that the interior of Winchcombe carries a stable, pre-terrestrial magnetization that likely dates from the period of aqueous alteration of the CM chondrite parent body. This remanence corresponds to a paleointensity of 31 ± 17 μT accounting for the average effect of parent body rotation. Winchcombe is rich in framboids and plaquettes of magnetite, which formed via precipitation following the dissolution of iron sulfide. This contrasts with most other CM chondrites, where magnetite formed predominantly via pseudomorphic replacement of FeNi metal. Accounting for the potential differences in recording fidelities of these types of magnetite, we find that the reported paleointensities from all CM chondrites to date are likely underestimates of the disk field intensity in the outer solar system, and use our measurements to calculate a unified intensity estimate of ~78 μT. This paleointensity is consistent with two independent values from recent studies, which collectively argue that the disk field could have played a larger role in shaping the behavior of the disk in the outer solar system than previously considered.  相似文献   
308.
Tridacnidae shells, a valuable archive of past environments, are common in the Balobok Rockshelter archaeological site on Sanga‐Sanga Island in the south Philippines. This site was occupied during the mid‐Holocene (ca. 5000–8800 14C yr B.P.), a period of Neolithic cultural expansion in the Philippines. This paper focuses on the preservation of two shell specimens, Hippopus hippopus and Tridacna maxima, unearthed from two mid‐Holocene layers within the rockshelter. The shells' mineralogy and microstructure (prismatic and crossed‐lamellar) were studied using micro‐Fourier transform infrared spectroscopy and scanning electron microscopy to determine if the samples were suitable as paleoenvironmental records. Both shells are still aragonitic but aragonite crystals of both microstructure types are partly dissolved. This dissolution, characteristic of meteoric water alteration, precludes their utility in paleoenvironmental geochemical studies. Nevertheless, these shells are abundant in archaeological sites in the region and may be better preserved in other depositional contexts; more studies on Philippine Tridacnidae shell diagenesis are needed. © 2011 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号