首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1268篇
  免费   86篇
  国内免费   18篇
测绘学   63篇
大气科学   103篇
地球物理   328篇
地质学   365篇
海洋学   89篇
天文学   285篇
综合类   2篇
自然地理   137篇
  2023年   1篇
  2022年   1篇
  2021年   32篇
  2020年   32篇
  2019年   38篇
  2018年   51篇
  2017年   36篇
  2016年   48篇
  2015年   50篇
  2014年   48篇
  2013年   77篇
  2012年   61篇
  2011年   68篇
  2010年   54篇
  2009年   84篇
  2008年   66篇
  2007年   64篇
  2006年   75篇
  2005年   68篇
  2004年   67篇
  2003年   55篇
  2002年   52篇
  2001年   43篇
  2000年   27篇
  1999年   34篇
  1998年   31篇
  1997年   12篇
  1996年   11篇
  1995年   11篇
  1994年   10篇
  1993年   8篇
  1992年   4篇
  1991年   6篇
  1990年   1篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1975年   1篇
排序方式: 共有1372条查询结果,搜索用时 781 毫秒
101.
A technique is described for the extraction of rhyolitic microtephra from inorganic Lateglacial lake sediments. This technique was successfully applied by Lowe and Turney (1996) and is an adaption of the method described by Pilcher & Hall (1992) for application to Holocene peat deposits. It uses a density separation procedure to concentrate any microtephra component in lake sediments and was applied to the investigation of a lake sediment succession from a small basin in NE Scotland. Using this approach is was possible to define quantitatively for the first time the presence of the Vedde Ash tephra layer on the British Isles.  相似文献   
102.
Although unroofing sequences are well known in the stratigraphic record, there is no general theory for estimating relevant basic quantities such as the time history of sediment production from a particular unit or the degree of mixing between successive units. Here we investigate the production of sediment from layered source rocks that are milled off by steady-state erosional topography. The shape of the sediment-production function for milling off a thin horizontal layer is given by the derivative of the hypsometric function, in the form of area contained within contours as a function of contour altitude. The time-scale for the production function, the ‘topographic mixing time’, is set by the topographic relief divided by the uplift rate. The production function for a sharp transition from one unit to another is given directly by the hypsometric function. The effects of stratal dip parallel to the mean slope of the erosional topography and finite layer thickness can be accounted for to a first approximation by simple geometric corrections to the mixing time. Finite layer thickness also has the effect of smoothing the production function although most natural hypsometric functions are smooth enough that this effect is relatively weak. The quality of an unroofing sequence can be measured in terms of the ‘sharpness’ of separation of successive peaks in sediment production produced by milling off a sequence of geometrically similar layers. This peak sharpness can be parameterized by a ratio of the interval between successive peaks in sediment production to topographic mixing time. By this measure, the quality of unroofing sequences is controlled by two parameters: the ratio of layer thickness to topographic relief, and the dip angle. The dip angle in concert with topographic mixing exerts a strong control on the degree of signal segregation; in particular, production of cleanly segregated signals for dip angles greater than about 15° requires very high ratios of layer thickness to relief. Hence identification of distinct unroofing sequences may place significant and useful constraints on the attitude and/or thickness of units in the eroding stratigraphy.  相似文献   
103.
The ocean geoid can be inferred from the topography of the mean sea surface. Satellite altimeters transmit radar pulses and determine the return traveltime to measure sea-surface height. The ERS-1 altimeter stacks 51 consecutive radar reflections on board the satellite to a single waveform. Tracking the time shift of the waveform gives an estimate of the distance to the sea surface. We retrack the ERS-1 radar traveltimes using a model that is focused on the leading edge of the waveforms. While earlier methods regarded adjacent waveforms as independent statistical events, we invert a whole sequence of waveforms simultaneously for a spline geoid solution. Smoothness is controlled by spectral constraints on the spline coefficients. Our geoid solutions have an average spectral density equal to the expected power spectrum of the true geoid. The coherence of repeat track solutions indicates a spatial resolution of 31  km, as compared to 41  km resolution for the ERS-1 Ocean Product. While the resolution of the latter deteriorates to 47  km for wave heights above 2  m, our geoid solution maintains its resolution of 31  km for rough sea. Retracking altimeter waveform data and constraining the solution by a spectral model leads to a realistic geoid solution with significantly improved along-track resolution.  相似文献   
104.
Matheron (1971) proposed an approximation of the extension variance in IR. We propose in this note an extension of this formula in IR 2 , based on a MacLaurin formula. Its application is shown in an example, the estimation of the maximum depressional storage of a soil surface.  相似文献   
105.
We undertake a quantitative investigation, using Monte Carlo simulations, of the amount by which quasars are expected to exceed radio galaxies in optical luminosity in the context of the 'receding torus' model. We compare these simulations with the known behaviour of the [O  III ] λ5007 and [O  II ] λ3727 emission lines and conclude that [O  III ] is the better indicator of the strength of the underlying non-stellar continuum.  相似文献   
106.
107.
108.
109.
Victoria Island lies at the north-western limit of the former North American (Laurentide) Ice Sheet in the Canadian Arctic Archipelago and displays numerous cross-cutting glacial lineations. Previous work suggests that several ice streams operated in this region during the last (Wisconsinan) glaciation and played a major role in ice sheet dynamics and the delivery of icebergs into the Arctic Ocean. This paper produces the first detailed synthesis of their behaviour from the Last Glacial Maximum through to deglaciation (~21–9.5 cal ka BP) based on new mapping and a previously published radiocarbon-constrained ice sheet margin chronology. Over 70 discrete ice flow events (flow-sets) are ‘fitted’ to the ice margin configuration to allow identification of several ice streams ranging in size from large and long-lived (thousands of years) to much smaller and short-lived (hundreds of years). The reconstruction depicts major ice streams in M'Clure Strait and Amundsen Gulf which underwent relatively rapid retreat from the continental shelf edge at some time between ~15.2 and 14.1 cal ka BP: a period which encompasses climatic warming and rapid sea level rise (meltwater pulse-1a). Following this, overall retreat was slower and the ice streams exhibited asynchronous behaviour. The Amundsen Gulf Ice Stream continued to operate during ice margin retreat, whereas the M'Clure Strait Ice Stream ceased operating and was replaced by an ice divide within ~1000 years. This ice divide was subsequently obliterated by another short-lived phase of ice streaming in M'Clintock Channel ~13 cal ka BP. The timing of this large ice discharge event coincides with the onset of the Younger Dryas. Subsequently, a minor ice divide developed once again in M'Clintock Channel, before final deglaciation of the island shortly after 9.5 cal ka BP. It is concluded that large ice streams at the NW margin of the Laurentide Ice Sheet, equivalent in size to the Hudson Strait Ice Stream, underwent major changes during deglaciation, resulting in punctuated delivery of icebergs into the Arctic Ocean. Published radiocarbon dates constrain this punctuated delivery, as far as is possible within the limits imposed by their precision, and we note their coincidence with pulses of meltwater delivery inferred from numerical modelling and ocean sediment cores.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号