首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   4篇
  国内免费   1篇
测绘学   3篇
大气科学   9篇
地球物理   30篇
地质学   39篇
海洋学   27篇
天文学   34篇
综合类   1篇
自然地理   8篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   5篇
  2009年   7篇
  2008年   10篇
  2007年   9篇
  2006年   10篇
  2005年   9篇
  2004年   6篇
  2003年   3篇
  2002年   6篇
  2001年   5篇
  2000年   11篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有151条查询结果,搜索用时 46 毫秒
81.
In the current study, low-background γ-spectrometry was employed to determine the 228Ra/226Ra activity ratio and 137Cs activity of 84 coastal water samples collected at six sites along the main island of Japan (Honshu Island) within the Sea of Japan, including the Tsushima Strait, and two other representative sites on Honshu Island (a Pacific shore and the Tsugaru Strait) at 1-month intervals in 2006.The 228Ra/226Ra ratio of coastal waters in the Sea of Japan exhibited similar patterns of seasonal variation, with minimum values during early summer (228Ra/226Ra = 0.6–0.8), maximum values during autumn (228Ra/226Ra = 1.5–3), and a time lag in their temporal changes ( 2.5 months and over  1300 km distance). However, the 2 other sites represented no clear periodic variation.In contrast to the positive correlation between 137Cs activity (0.6–1.7 mBq/L) and salinity (15–35), the 228Ra/226Ra ratio of coastal water samples from the Sea of Japan was not observed to correlate with salinity, and the increase in the 228Ra/226Ra ratio was not as marked (0.5–1; May–June 2004 and 2005) during the migration along Honshu Island. The input of land-derived water and/or the diffusion of radium from coastal sediments is unlikely to have affected the wide seasonal variation in the 228Ra/226Ra ratio observed in these water samples.The seasonal variation in the 228Ra/226Ra ratio recorded for the coastal waters of the Sea of Japan is considered to be mainly controlled by the remarkable changes in the mixing ratio of the 228Ra-poor Kuroshio and the 228Ra-rich continental shelf waters within the East China Sea (ECS). After passing through the Tsushima Strait, this water mass moves northeast along the coastline of the Sea of Japan as the Tsushima Coastal Branch Current (TCBC).  相似文献   
82.
High-time resolution 14C dating of Lake Baikal sediment cores indicates negative and positive anomalies of calculated linear sedimentation rate (LSR; 1.1 and 35.6 cm/ka, respectively) during the period of climate transition from the last glacial to Holocene. The timing of the Lake Baikal apparent LSR anomalies is consistent with that of the changes in the atmospheric radiocarbon concentration (Δ14C) during Younger Dryas rapid cooling event. 14C dating of lipids in the Lake Baikal surface sediments revealed that the sources of sedimentary lipids were different in each basin. In the Northern Basin of Lake Baikal, the 14C age of total lipids from the surface sediment (4.0 14C ka) was found to be older than that of TOC (1.6 14C ka). By contrast, the 14C age of total lipids in the Southern Basin was younger than that of the TOC by ca. 0.7–3.0 ka.In the Lake Hovsgol sediment cores, ages of the main lithologic boundaries during the last glacial–interglacial transition were estimated based on new 14C data sets. TOC concentration in the cores started to rapidly increase at 13.8 ± 0.3 14C ka at the base of the basinwide finely laminated layer deposited during Bølling/Allerød. The base of the layer diatomaceous mud corresponds to the end of Younger Dryas event (10.6 ± 0.1 14C ka).  相似文献   
83.
Past changes in phytoplankton assemblages in Lake Baikal over the last 4.5 Ma, both in population and composition, are inferred from the downcore profiles of the relatively stable chlorophyll derivatives steryl esters of pyropheophorbides a and b (steryl chlorine esters; SCEs) in the 0–200 m section of the BDP-98 drill core, supplemented by the data on biogenic silica (BSi) and total organic carbon (TOC) contents. SCEs-a and -b dominate among sedimentary chlorophyll derivatives in the BDP-98 sediments except for the upper few meters, indicating their high stability during diagenetic alteration of sediments. The depth (age) profiles of SCEs-a are consistent with BSi and TOC profiles and are interpreted as reflecting primary productivity of the lake in the past. Baikal proxies reveal close correlation with marine oxygen isotope records (MIS stratigraphy). These observations confirm that climate change in the northern hemisphere has been a primary factor controlling the total phytoplankton productivity in Lake Baikal during the last several million years.Among SCEs-a, C30 (dinostanol)-SCE-a, a marker of dinoflagellates was identified by GC–MS analysis. SCE-b, a marker of green algae, was identified by its UV–vis spectrum. The ratio of C30-SCE-a to total SCEs-a (TSCEs-a) was higher during 4.5–4.2 and 1.7–1.3 Ma, suggesting that dinoflagellates proliferated preferentially in those periods. The early Pleistocene maximum of this ratio corresponds to the broad minimum of diatom abundance previously suggested to have recorded a prolonged regional cooling. An abrupt increase in the SCE-b/TSCEs-a ratio was observed at 2.5–2.6 Ma, indicating that green algae containing chlorophyll b have proliferated in Lake Baikal during this period. This interval has also been suggested to contain evidence for a significant regional cooling based on minima of diatom abundance and BSi in sediments. The depth profile of C27Δ5 (cholesterol)-SCE-a relative to TSCEs-a showed a trend similar to that of BSi, suggesting that C27Δ5-SCE-a/TSCEs-a ratio is a potential marker of diatoms in Lake Baikal.Certain mismatches between the Lake Baikal profiles of biological indicators and the marine oxygen isotope records, as well as the slight temporal offsets between different Lake Baikal biological marker signals suggest that the regional component of climatic and/or lacustrine environmental changes also have played a role in determining the composition of the Lake Baikal Plio-Pleistocene phytoplankton assemblage.  相似文献   
84.
Temperature and water content anomalies just above the 660-km discontinuity under the Japan Islands are estimated from seismological observations. Two sets of seismological observations of P-wave velocity perturbations and depth variations of the 660-km discontinuity are used, which are (1) long-wavelength (~ 500 km) variations from seismic tomography based on a grid parameterization and waveform analysis of ScS reverberations and (2) moderate-wavelength (~ 150 km) variations from seismic tomography with a block parameterization and receiver-function analysis. To estimate temperature and water content anomalies, partial derivatives of velocity and depth variations with respect to temperature and water content determined by mineral physics studies are used. Under Southwest Japan, low temperature and high water-content anomalies are obtained from both sets of seismological observations, which have already been found by a previous study. Under Northeast Japan, however, there are discrepancies between the results estimated from the two data sets, possibly due to the different resolution scales. This discrepancy is dismissed when examining distributions of the temperature and water content anomalies. These anomalies can be grouped into two geographical locations, one group under Southwest Japan, the other under Northeast Japan. The two groups are clearly separated and exhibit common features in both sets of the seismological observations. The grouping is interpreted by a compositional difference between the subducting Pacific slab under Southwest Japan and a normal mantle under Northeast Japan.  相似文献   
85.
86.
During Li recovery from salar brines, Li concentration is typically increased to about 60,000 mg L?1 by evaporation. We investigated the concentration changes of Li, Na, K, Mg, Cl, SO4, and B during evaporation of both natural Uyuni and artificial Atacama brines. The Uyuni brine exhibited a maximum Li concentration of 6810 mg L?1 at 31 days of evaporation, at which point the majority of the Na and K in the brine was removed. The Li concentration decreased with further evaporation due to precipitation as Li2SO4, such that the level at the 56 day mark was approximately 4130 mg L?1. In contrast, the artificial Atacama brine showed no pronounced Li precipitation, even after 54 days, at which point the Li concentration was 21,800 mg L?1. The initial concentrations of Na and K in the Atacama brine were higher than those in the Uyuni brine, and the Atacama solution still retained K after 54 days of evaporation. The order of precipitation of cation species during the evaporation of both brines was: Na, followed by K, Mg, and Li. Thus, Li precipitation in the Atacama brine might be prevented due to the more favored precipitations of Na and K, such that significant Li removal did not occur in this brine.  相似文献   
87.
88.
89.
Abstract— The trace element distributions in the matrix of primitive chondrites were examined using four least‐contaminated matrix specimens from the polished sections of the Allende (CV) meteorite. Analysis of rare earth element (REE), Ba, Sr, Rb, and K abundances by isotope dilution mass spectrometry revealed that the elemental abundances of lithophile elements except for alkali metals (K, Rb) in the specimens of the Allende matrix studied here are nearly CI (carbonaceous Orgueil) chondritic (~1 × CI). Compared to refractory elements, all the matrix samples exhibited systematic depletion of the moderately volatile elements K and Rb (0.1–0.5 × CI). We suggest that the matrix precursor material did not carry significant amounts of alkali metals or that the alkalis were removed from the matrix precursor material during the parent body process and/or before matrix formation and accretion. The matrix specimens displayed slightly fractionated REE abundance patterns with positive Ce anomalies (CI‐normalized La/Yb ratio = 1.32–1.65; Ce/Ce* = 1.16–1.28; Eu/Eu* = 0.98–1.10). The REE features of the Allende matrix do not indicate a direct relationship with chondrules or calcium‐aluminum‐rich inclusions (CAIs), which in turn suggests that the matrix was not formed from materials produced by the breakage and disaggregation of the chondrules or CAIs. Therefore, we infer that the Allende matrix retains the REE features acquired during the condensation process in the nebula gas.  相似文献   
90.

Background

We analyzed the dynamics of carbon (C) stocks and CO2 removals by Brazilian forest plantations over the period 1990–2016. Data on the extent of forests compiled from various sources were used in the calculations. Productivities were simulated using species-specific growth and yield simulators for the main trees species planted in the country. Biomass expansion factors, root-to-shoot ratios, wood densities, and carbon fractions compiled from literature were applied. C stocks in necromass (deadwood and litter) and harvested wood products (HWP) were also included in the calculations.

Results

Plantation forests stocked 231 Mt C in 1990 increasing to 612 Mt C in 2016 due to an increase in plantation area and higher productivity of the stands during the 26-year period. Eucalyptus contributed 58% of the C stock in 1990 and 71% in 2016 due to a remarkable increase in plantation area and productivity. Pinus reduced its proportion of the carbon storage due to its low growth in area, while the other species shared less than 6% of the C stocks during the period of study. Aboveground biomass, belowground biomass and necromass shared 71, 12, and 5% of the total C stocked in plantations in 2016, respectively. HWP stocked 76 Mt C in the period, which represents 12% of the total C stocked. Carbon dioxide removals by Brazilian forest plantations during the 26-year period totaled 1669 Gt CO2-e.

Conclusions

The carbon dioxide removed by Brazilian forest plantations over the 26 years represent almost the totality of the country´s emissions from the waste sector within the same period, or from the agriculture, forestry and other land use sector in 2016. We concluded that forest plantations play an important role in mitigating GHG (greenhouse gases) emissions in Brazil. This study is helpful to improve national reporting on plantation forests and their GHG sequestration potential, and to achieve Brazil’s Nationally Determined Contribution and the Paris Agreement.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号