首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   7篇
  国内免费   4篇
测绘学   12篇
大气科学   51篇
地球物理   60篇
地质学   110篇
海洋学   32篇
天文学   37篇
综合类   2篇
自然地理   29篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   6篇
  2017年   8篇
  2016年   8篇
  2015年   4篇
  2014年   17篇
  2013年   27篇
  2012年   14篇
  2011年   12篇
  2010年   6篇
  2009年   27篇
  2008年   13篇
  2007年   18篇
  2006年   9篇
  2005年   8篇
  2004年   9篇
  2003年   13篇
  2002年   8篇
  2001年   7篇
  2000年   6篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1992年   3篇
  1991年   4篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1982年   8篇
  1981年   4篇
  1980年   3篇
  1979年   8篇
  1978年   3篇
  1977年   6篇
  1976年   2篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有333条查询结果,搜索用时 15 毫秒
71.
The Altyn Tagh Fault (ATF) serves as a key continental‐scale controlling structural element of the Tibetan Plateau. However, its eastward extent remains controversial. Here we use high‐resolution seismic reflection profiles to investigate the subsurface structures of the easternmost ATF and use these to delimit the easternmost extent of the fault. The structural analyses show an eastward geometric change from transpressional positive flower structures to compressional thrusts, with transpression‐induced shortening magnitudes decreasing eastwards from a maximum of ~5.3 km to being absent. Stratigraphic controls indicate that the deformation took place over the last ~<1.2 Ma. Our wider findings lead us to: (a) reject the suggestion that the ATF previously extended beyond the Kuantan Shan‐Hei Shan to link with the Alxa‐East Mongolia Fault; and (b) propose that the rigid block model used to describe the Tibetan Plateau crust is not consistent with the extent and structural details of the easternmost ATF.  相似文献   
72.
73.
The traditional method for computing the steady oceanic circulation has been by stepping an oceanic model forward in time until transients are damped by friction. An alternative method, which has the potential for being more economical is to minimize the sum of the squares of the residuals of the steady model equations. A variety of algorithms might be considered for computing the minimum; attention here is focused on preconditioned conjugate-gradient descent with the gradient computed using an adjoint model. The choice of varibles, i.e. the preconditioning transformation used in the optimization process, is found to be critical to the efficiency of the method. An appropriate preconditioning transformation can be suggested by a heuristic analysis similar to that commonly used to test the stability of numerical models. The method is demonstrated within the context of the barotropic vorticity equation.  相似文献   
74.
75.
76.
In an effort to elucidate the mechanism of formation and accretion of ferromanganese nodules, transverse sections of undisturbed botryoid surfaces of nodules from the abyssal central North Pacific were examined by X-ray analyses both by multiple replicate sample transects and mapping. Surface concentrations of Mn and Fe were found of the size and shape of microorganisms. Abundant microorganism-like objects covering the surface and the apparent absence of Si (i.e. no sediment) with the Mn and Fe concentrations suggests microorganisms may be involved either in the selective accretion or removal of these metals. If metal accretion was simply physicochemical, one would expect a more or less even distribution of Mn and Fe on the botryoid surfaces.The replicate X-ray sample transects showed that Mn and Fe have a distribution corresponding to botryoid zonation. Areas of high Mn X-ray intensity were found associated with the cap and equatorial zones of the botryoid. Most of the valley zone of the botryoid show a more or less even Mn distribution and an increase in Fe X-ray intensity. At the base of the botryoid both metals apparently precipitously decrease.  相似文献   
77.
The direct disposal of CO2 into the ocean interior represents a possible means to help mitigate rising levels of atmospheric CO2. Here, we use three different versions of an ocean general circulation model (OGCM) to simulate the direct injection of liquid CO2 near Tokyo. Our results confirm that direct injection can sequester large amounts of CO2 from the atmosphere when disposal is made at sufficient depth (80–100% of the carbon injected at 3000 m remains in the ocean after 500 years) but show that the calculated efficiency is rather sensitive to the choice of physical model. Moreover, we show, for the first time in an OGCM and under a reasonable set of economic assumptions, that sequestration effectiveness is quite high for even shallow injections. However, the severe acidification that accompanies injection and the impossibility of effectively monitoring injected plumes argue against the large-scale viability of this technology. Our coarse-grid models show that injection at the rate of 0.1 Pg-C/yr lowers pH near the site of injection by as much as 0.7–1.0 pH-unit. Such pH anomalies would be much larger in more finely gridded models (and in reality) and have potential to severely harm deep-sea organisms. We also show that, after several hundred years, one would effectively need to survey the entire ocean in order to accurately verify the inventory of injected carbon. These results suggest that while retention may be sufficient to justify disposal costs, other practical problems will limit or at best delay widespread deployment of this technology.  相似文献   
78.
Several shore-parallel marine sand bodies lie on the Louisiana continental shelf. They are Trinity Shoal, Ship Shoal, Outer Shoal, and the St. Bernard Shoals. These shoals mark the submerged positions of ancient shorelines associated with abandoned deltas. Three of these shoals are single elongate deposits. The fourth shoal, the St. Bernard Shoals, consists of a group of discrete sand bodies ranging in size from 44 to 0.05 km2, 25 km southeast of the Chandeleur Islands in 15–18 m of water. The St. Bernard Shoals are stratigraphically above the St. Bernard delta complex, which was active 2,500–1,800 years b.p. Understanding the evolution of the St. Bernard Shoals is necessary to reconstruct the Holocene chronology of the St. Bernard delta complex and the eastern Louisiana continental shelf. For this study, 47 vibracores and 400 km of shallow seismic reflection data collected in 1987 across the Louisiana shelf were analyzed. In June 2008, 384 km of higher-resolution seismic reflection data were acquired across the study area and appended to the preexisting datasets. Vibracores were integrated with seismic profiles to identify facies and their regional distribution. Our results demonstrate that the deltaic package stratigraphically below the St. Bernard Shoals is chronologically younger than the northern distributaries, but derived from the same trunk distributary channel (Bayou la Loutre). The river eventually bypassed the northern distributaries, and began to deposit sediment further onto the continental shelf. After abandonment, the overextended delta lobe was rapidly transgressed, creating a transgressive shoreline that eventually coalesced with earlier shorelines in the region to form the Chandeleur Islands. The St. Bernard Shoals formed by the reworking of the relict distributary deposits exposed on the inner to mid shelf during and subsequent to shoreface ravinement.  相似文献   
79.
“Rotating RAdio Transients” (RRATs) are a newly discovered astronomical phenomenon, characterised by occasional brief radio bursts, with average intervals between bursts ranging from minutes to hours. The burst spacings allow identification of periodicities, which fall in the range 0.4 to 7 seconds. The RRATs thus seem to be rotating neutron stars, albeit with properties very different from the rest of the population. We here present the serendipitous detection with the Chandra X-ray Observatory of a bright point-like X-ray source coincident with one of the RRATs. We discuss the temporal and spectral properties of this X-ray emission, consider counterparts in other wavebands, and interpret these results in the context of possible explanations for the RRAT population. B.M.G. acknowledges the support of NASA through LTSA grant NAG5-13023 and of an Alfred P. Sloan Fellowship.  相似文献   
80.
The lower Nanaimo Group was deposited in the (forearc) Georgia Basin, Canada and records the basin's initiation and early depositional evolution. Nanaimo Group strata are subdivided into 11 lithostratigraphic units, which are identified based on lithology, paleontology, texture and position relative to both the basal nonconformity and to each other. Significant topography on the basal nonconformity, however, has resulted in assignment of lithostratigraphic units that are not time correlative, and hence, cannot reliably be used to accurately reconstruct basin evolution. Herein, we present a sequence stratigraphic framework for lower Nanaimo Group strata in the Comox Sub-Basin (northern Georgia Basin) that integrates both facies analysis and maximum depositional ages (MDAs) derived from detrital zircon. This stratigraphic framework is used to define significant sub-basin-wide surfaces that bound depositional units and record the evolution of the basin during its early stages of development. Seven distinct depositional phases are identified in the lower 700 m of the lower Nanaimo Group. Depositional phases are separated by marine flooding surfaces, regressive surfaces, or disconformities. The overall stratigraphy reflects net transgression manifested as an upwards transition from braided fluvial conglomerates to marine mudstones. Transgression was interrupted by periods of shoreline progradation, and both facies analysis and MDAs reveal a disconformity in the lowermost part of the Nanaimo Group in the Comox Sub-Basin. Stratigraphic reconstruction of the Comox Sub-Basin reveals two dominant depocenters (along depositional strike) for coarse clastics (sandstones and conglomerates) during early development of the Georgia Basin. The development and position of these depocenters is attributed to subduction/tectonism driving both subsidence in the north-northwest and uplift in the central Comox Sub-Basin. Our work confirms that in its earliest stages of development, the Georgia Basin evolved from an underfilled, ridged forearc basin that experienced slow and stepwise drowning to a shoal-water ridged forearc basin that experienced rapid subsidence. We also propose that the Georgia Basin is a reasonable analogue for ridged forearc basins globally, as many ridged forearcs record similar depositional histories during their early evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号