首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   3篇
测绘学   2篇
大气科学   38篇
地球物理   29篇
地质学   87篇
海洋学   18篇
天文学   27篇
自然地理   10篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   4篇
  2013年   24篇
  2012年   2篇
  2011年   11篇
  2010年   6篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1998年   4篇
  1997年   6篇
  1996年   3篇
  1995年   5篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1975年   4篇
  1974年   5篇
  1973年   9篇
  1972年   6篇
  1971年   3篇
  1970年   1篇
  1960年   1篇
  1956年   1篇
  1934年   2篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
131.
The assumptions that Karenia brevis cell abundance and brevetoxin concentrations are proportional and that cell abundance and chlorophyll are related were tested in a 3-year field study off the west coast of Florida. The relationship between K. brevis cell abundance and brevetoxins (PbTx-2+PbTx-3) in whole water samples was strong (R2=0.92). There was no significant difference between the brevetoxin concentrations in whole water and the >0.7 μm particulate fraction. Only 7% of the total brevetoxin concentration was measured in the <0.7 μm (cell free) filtrate. The relationship of K. brevis cell abundance >5000 cells L−1 with chlorophyll for all cruises and at all depths was robust (R2=0.78). These data substantiate the use of chlorophyll as a proxy for K. brevis cell abundance and K. brevis cell abundance as a proxy for brevetoxins during blooms. The ratios of the brevetoxins, PbTx-2:PbTx-3, was significantly higher in surface water than in bottom water. This information in conjunction with K. brevis growth rates may provide a useful indicator for determining the physiological state of the bloom over time.  相似文献   
132.
G.J. Black  D.B. Campbell 《Icarus》2010,209(1):224-229
We present radar imaging of Mercury using the Arecibo Observatory’s 70-cm wavelength radar system during the inferior conjunction of July 1999. At that time the sub-Earth latitude was ∼11°N and the highly reflective region at Mercury’s north pole that was first identified in radar images at the shorter wavelengths of 3.6 cm [Slade, M.A., Butler, B.J., Muhleman, D.O., 1992. Science 258, 635-640] and 13 cm [Harmon, J.K., Slade, M.A., 1992. Science 258, 640-643] was again clearly detected. The reflectivity averaged over a 75,000 km2 region including the pole is similar to that measured at the other wavelengths over a comparable area, and the 70 cm circular polarization ratio of μC0.87 is possibly slightly lower. If this strong backscattering results from volume scattering in low absorption layers, the persistence of this effect over more than an order of magnitude change in wavelength scale has implications for the depth and thickness of the deposits responsible. The resolution of the radar maps at this wavelength is not sufficient to resolve individual craters, nor to discern features at other latitudes, but the planet’s total reflectivity is consistent with previous work and the scattering function suggests a surface roughness at this wavelength similar to the lunar highlands.  相似文献   
133.
Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.  相似文献   
134.
We have compiled 223 sedimentary charcoal records from Australasia in order to examine the temporal and spatial variability of fire regimes during the Late Quaternary. While some of these records cover more than a full glacial cycle, here we focus on the last 70,000 years when the number of individual records in the compilation allows more robust conclusions. On orbital time scales, fire in Australasia predominantly reflects climate, with colder periods characterized by less and warmer intervals by more biomass burning. The composite record for the region also shows considerable millennial-scale variability during the last glacial interval (73.5–14.7 ka). Within the limits of the dating uncertainties of individual records, the variability shown by the composite charcoal record is more similar to the form, number and timing of Dansgaard–Oeschger cycles as observed in Greenland ice cores than to the variability expressed in the Antarctic ice-core record. The composite charcoal record suggests increased biomass burning in the Australasian region during Greenland Interstadials and reduced burning during Greenland Stadials. Millennial-scale variability is characteristic of the composite record of the sub-tropical high pressure belt during the past 21 ka, but the tropics show a somewhat simpler pattern of variability with major peaks in biomass burning around 15 ka and 8 ka. There is no distinct change in fire regime corresponding to the arrival of humans in Australia at 50 ± 10 ka and no correlation between archaeological evidence of increased human activity during the past 40 ka and the history of biomass burning. However, changes in biomass burning in the last 200 years may have been exacerbated or influenced by humans.  相似文献   
135.
We statistically reconstruct austral summer (winter) surface air temperature fields back to ad 900 (1706) using 22 (20) annually resolved predictors from natural and human archives from southern South America (SSA). This represents the first regional-scale climate field reconstruction for parts of the Southern Hemisphere at this high temporal resolution. We apply three different reconstruction techniques: multivariate principal component regression, composite plus scaling, and regularized expectation maximization. There is generally good agreement between the results of the three methods on interannual and decadal timescales. The field reconstructions allow us to describe differences and similarities in the temperature evolution of different sub-regions of SSA. The reconstructed SSA mean summer temperatures between 900 and 1350 are mostly above the 1901?C1995 climatology. After 1350, we reconstruct a sharp transition to colder conditions, which last until approximately 1700. The summers in the eighteenth century are relatively warm with a subsequent cold relapse peaking around 1850. In the twentieth century, summer temperatures reach conditions similar to earlier warm periods. The winter temperatures in the eighteenth and nineteenth centuries were mostly below the twentieth century average. The uncertainties of our reconstructions are generally largest in the eastern lowlands of SSA, where the coverage with proxy data is poorest. Verifications with independent summer temperature proxies and instrumental measurements suggest that the interannual and multi-decadal variations of SSA temperatures are well captured by our reconstructions. This new dataset can be used for data/model comparison and data assimilation as well as for detection and attribution studies at sub-continental scales.  相似文献   
136.
The goal of this study is to determine reduced partition function ratios for a variety of species of zinc, both as a metal and in aqueous solutions in order to calculate equilibrium stable isotope partitioning. We present calculations of the magnitude of Zn stable-isotope fractionation (66,67,68Zn/64Zn) between aqueous species and metallic zinc using measured vibrational spectra (fit from neutron scattering studies of metallic zinc) and a variety of electronic structure models. The results show that the reduced metal, Zn(0), will be light in equilibrium with oxidized Zn(II) aqueous species, with the best estimates for the Zn(II)-Zn(0) fractionation between hexaquo species and metallic zinc being Δ66/64Znaq-metal ∼ 1.6‰ at 25 °C, and Δ66/64Znaq-metal ∼ 0.8‰ between the tetrachloro zinc complex and metallic zinc at 25 °C using B3LYP/aug-cc-pVDZ level of theory and basis set. To examine the behavior of zinc in various aqueous solution chemistries, models for Zn(II) complex speciation were used to determine which species are thermodynamically favorable and abundant under a variety of different conditions relevant to natural waters, experimental and industrial solutions. The optimal molecular geometries for [Zn(H2O)6]2+, [Zn(H2O)6]·SO4, [ZnCl4]2− and [Zn(H2O)3(C3H5O(COO)3)] complexes in various states of solvation, protonation and coordination were calculated at various levels of electronic structure theory and basis set size. Isotopic reduced partition function ratios were calculated from frequency analyses of these optimized structures. Increasing the basis set size typically led to a decrease in the calculated reduced partition function ratios of ∼0.5‰ with values approaching a plateau using the aug-cc-pVDZ basis set or larger. The widest range of species were studied at the B3LYP/LAN2DZ/6-31G level of theory and basis-set size for comparison. Aqueous zinc complexes where oxygen is bound to the metal center tended to have the largest reduced partition function ratios, with estimated fractionations ranging from 2.2 to 2.9‰ (66Zn/64Zn) at 25 °C relative to metallic zinc. The tetrahedrally coordinated tetrachloro zinc complex, where zinc is bound exclusively to chloride, had the lowest reduced partition function ratio for a Zn(II) species (Δ66/64Znaq-metal ∼ 1-1.3‰ at 25 °C). Increasing the number of waters in the second shell of solvation of the above complexes led to variable results, most commonly leading to a decrease of ∼0.2 to 0.3‰ in calculated Δ66/64Znaq-metal at 25 °C.These estimates are useful in the interpretation of observed fractionations during the electrochemical deposition of zinc, where aqueous-metal fractionations of up to 5.5‰ are observed. The models show these are not caused by an equilibrium fractionation process. These results suggest that the redox cycle of zinc during industrial processing may be responsible for isotopically distinct reservoirs of zinc observed in polluted environments. The leaching of metallic zinc or zinc tailings from industrial sites could lead to the observed heavy signature in river systems, the magnitude of which will be reliant on the source material and the aqueous species that form.  相似文献   
137.
The current outbreak of mountain pine beetle (MPB) that started in the late 1990s in British Columbia, Canada, is the largest ever recorded in the north American native habitat of the beetle. The killing of trees is expected to change the vertical distribution of net radiation ( $Q^*$ Q ? ) and the partitioning of latent ( $Q_\mathrm{E}$ Q E ) and sensible ( $Q_\mathrm{H}$ Q H ) heat fluxes in the different layers of an attacked forest canopy. During an intensive observation period in the summer of 2010, eddy-covariance flux and radiation measurements were made at seven heights from ground level up to 1.34 times the canopy height in an MPB-attacked open-canopy forest stand $(\hbox {leaf area index} = 0.55~\mathrm{{m}}^{2}\ \mathrm{{m}}^{-2})$ ( leaf area index = 0.55 m 2 m - 2 ) in the interior of British Columbia, Canada. The lodgepole pine dominated stand with a rich secondary structure (trees and understorey not killed by the beetle) was first attacked by the MPB in 2003 and received no management. In this study, the vertical distribution of the energy balance components and their sources and sinks were analyzed and energy balance closure (EBC) was determined for various levels within the canopy. The low stand density resulted in approximately 60 % of the shortwave irradiance and 50 % of the daily total $Q^*$ Q ? reaching the ground. Flux divergence calculations indicated relatively strong sources of latent heat at the ground and where the secondary structure was located. Only very weak sources of latent heat were found in the upper part of the canopy, which was mainly occupied by dead lodgepole pine trees. $Q_\mathrm{H}$ Q H was the dominant term throughout the canopy, and the Bowen ratio ( $Q_\mathrm{H}/Q_\mathrm{E}$ Q H / Q E ) increased with height in the canopy. Soil heat flux ( $Q_\mathrm{G}$ Q G ) accounted for approximately 4 % of $Q^*$ Q ? . Sensible heat storage in the air ( $\Delta Q_\mathrm{S,H}$ Δ Q S , H ) was the largest of the energy balance storage components in the upper canopy during daytime, while in the lower canopy sensible heat storage in the boles ( $\Delta Q_\mathrm{S,B}$ Δ Q S , B ) and biochemical energy storage ( $\Delta Q_\mathrm{S,C}$ Δ Q S , C ) were the largest terms. $\Delta Q_\mathrm{S,H}$ Δ Q S , H was almost constant from the bottom to above the canopy. $\Delta Q_\mathrm{S,C}$ Δ Q S , C , $\Delta Q_\mathrm{S,B}$ Δ Q S , B and latent heat storage in the air ( $\Delta Q_\mathrm{S,E}$ Δ Q S , E ) varied more than $\Delta Q_\mathrm{S,H}$ Δ Q S , H throughout the canopy. During daytime, energy balance closure was high in and above the upper canopy, and in the lowest canopy level. However, where the secondary structure was most abundant, ${\textit{EBC}} \le 66\,\%$ EBC ≤ 66 % . During nighttime, the storage terms together with $Q_\mathrm{G}$ Q G made up the largest part of the energy balance, while $Q_\mathrm{H}$ Q H and $Q_\mathrm{E}$ Q E were relatively small. These radiation and energy balance measurements in an insect-attacked forest highlight the role of secondary structure in the recovery of attacked stands.  相似文献   
138.
Abstract

A physically‐based numerical model was developed to estimate the temporal course of the surface energy flux densities and the soil temperatures in dry and wet bare soils. Aerodynamic heat, vapour and momentum transfer theory was used to calculate the sensible and latent heat flux densities at the surface under diabatic and adiabatic conditions. A finite‐difference solution of the differential equation describing one‐dimensional heat transfer was used to calculate the surface soil heat flux density and soil profile temperatures. The surface temperature was determined iteratively by the simultaneous solution of equations describing radiative, heat and momentum transfer at the surface. The model was tested with measurements from energy balance studies conducted on a dry, sandy soil and a wet, silt loam soil, and was found to predict accurately the surface energy fluxes and soil temperatures over three‐day periods under conditions of potential and negligible evaporation. The sensitivity of the model to uncertainties in the aerodynamic roughness lengths for momentum (z0) and heat (zT) is reported. Values for z0 and Z0/ZT of 0.5 mm and 3.0, respectively, resulted in the best agreement between modelled and measured values of the fluxes and temperatures for both soils.  相似文献   
139.
 Large volume (100–1000 km3), widespread rhyolitic ignimbrites are the main products of the Taupo volcanic zone (TVZ) of New Zealand, one of the most active silicic volcanic regions on Earth. Several factors have made correlation and the eruptive history of the ignimbrites difficult to resolve, including limited exposure and chronological data, broadly similar lithologies and the lack of stratigraphic successions visible in the field. We have used the isothermal plateau fission track (ITPFT) method on glass shards from the non-welded basal zones to obtain new eruption ages for the widespread units: Ongatiti (1.25±0.12 Ma), Whakamaru group (0.34±0.03 Ma), Matahina (0.34±0.02 Ma), Chimp (0.33±0.02 Ma), Kaingaroa (0.31±0.01 Ma) and Mamaku (0.23±0.01 Ma) ignimbrites. These glasses show little evidence of geochemical alteration and allow the units to be fingerprinted for correlation. The glass ages we have obtained for the late Quaternary units provide an independent check on chronological data obtained from phenocryst phases. The ITPFT method is a useful dating approach for sanidine-poor eruptives which limit the application of 40Ar/39Ar. Errors as limited as 10–30 ka can be obtained from the weighted mean of several age determinations. The thermoremanent magnetic (TRM) direction recorded in the units provides a means of correlation over a wide area of the TVZ, because each ignimbrite can be distinguished by its unique record of palaeosecular variation. These data indicate that the four separately mapped members of the Whakamaru group represent the same phase of activity, occurring within a period of 100 years. The TRM data indicate that the widespread Ahuroa ignimbrite erupted during an excursion in Earth's magnetic field, perhaps associated with the Cobb Mountain subchron (ca. 1.2 Ma). The youngest widespread welded unit, Mamaku ignimbrite (ca. 0.23 Ma), also erupted during an excursion and may represent a southern hemisphere record of the Pringle Falls geomagnetic episode found in the western United States. The palaeomagnetic and ITPFT data for the widespread late Quaternary ignimbrites suggest a major period of caldera formation at 0.34–0.30 Ma. This interval represents the eruption of multiple units from the Whakamaru caldera, followed by the formation of the Okataina and Reporoa calderas in rapid succession. Received: 20 November 1995 / Accepted: 8 May 1996  相似文献   
140.
Cassini 2.2-cm radar and radiometric observations of seven of Saturn's icy satellites yield properties that apparently are dominated by subsurface volume scattering and are similar to those of the icy Galilean satellites. Average radar albedos decrease in the order Enceladus/Tethys, Hyperion, Rhea, Dione, Iapetus, and Phoebe. This sequence most likely corresponds to increasing contamination of near-surface water ice, which is intrinsically very transparent at radio wavelengths. Plausible candidates for contaminants include ammonia, silicates, metallic oxides, and polar organics (ranging from nitriles like HCN to complex tholins). There is correlation of our targets' radar and optical albedos, probably due to variations in the concentration of optically dark contaminants in near-surface water ice and the resulting variable attenuation of the high-order multiple scattering responsible for high radar albedos. Our highest radar albedos, for Enceladus and Tethys, probably require that at least the uppermost one to several decimeters of the surface be extremely clean water ice regolith that is structurally complex (i.e., mature) enough for there to be high-order multiple scattering within it. At the other extreme, Phoebe has an asteroidal radar reflectivity that may be due to a combination of single and volume scattering. Iapetus' 2.2-cm radar albedo is dramatically higher on the optically bright trailing side than the optically dark leading side, whereas 13-cm results reported by Black et al. [Black, G.J., Campbell, D.B., Carter, L.M., Ostro, S.J., 2004. Science 304, 553] show hardly any hemispheric asymmetry and give a mean radar reflectivity several times lower than the reflectivity measured at 2.2 cm. These Iapetus results are understandable if ammonia is much less abundant on both sides within the upper one to several decimeters than at greater depths, and if the leading side's optically dark contaminant is present to depths of at least one to several decimeters. As argued by Lanzerotti et al. [Lanzerotti, L.J., Brown, W.L., Marcantonio, K.J., Johnson, R.E., 1984. Nature 312, 139-140], a combination of ion erosion and micrometeoroid gardening may have depleted ammonia from the surfaces of Saturn's icy satellites. Given the hypersensitivity of water ice's absorption length to ammonia concentration, an increase in ammonia with depth could allow efficient 2.2-cm scattering from within the top one to several decimeters while attenuating 13-cm echoes, which would require a six-fold thicker scattering layer. If so, we would expect each of the icy satellites' average radar albedos to be higher at 2.2 cm than at 13 cm, as is the case so far with Rhea [Black, G., Campbell, D., 2004. Bull. Am. Astron. Soc. 36, 1123] as well as Iapetus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号