首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   114篇
  国内免费   73篇
测绘学   79篇
大气科学   93篇
地球物理   80篇
地质学   210篇
海洋学   41篇
天文学   4篇
综合类   29篇
自然地理   35篇
  2024年   7篇
  2023年   17篇
  2022年   27篇
  2021年   22篇
  2020年   17篇
  2019年   32篇
  2018年   42篇
  2017年   18篇
  2016年   17篇
  2015年   22篇
  2014年   21篇
  2013年   34篇
  2012年   24篇
  2011年   39篇
  2010年   30篇
  2009年   26篇
  2008年   16篇
  2007年   16篇
  2006年   15篇
  2005年   9篇
  2004年   14篇
  2003年   13篇
  2002年   17篇
  2001年   11篇
  2000年   9篇
  1999年   7篇
  1998年   4篇
  1997年   5篇
  1996年   10篇
  1995年   10篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
排序方式: 共有571条查询结果,搜索用时 140 毫秒
561.
党的十九届四中全会首次提出将数据作为生产要素,参与收益分配,标志着我国正式进入数据红利大规模释放时代。地理信息数据作为基础性资源,是现代信息资源的重要组成部分,发展地理信息数据交易是推动数据成为生产要素的题中应有之义。地理信息数据包含大量时间、空间、属性信息,具有丰富的内涵和价值以及保密性、敏感性的特点。如何在保证地理信息数据安全的情况下,将其融入全国的数据要素市场,是值得深入探索的课题。分析了我国地理信息数据应用和交易现状,研究了地理信息数据交易面临的问题和挑战,提出了建立地理信息交易试点,针对交易规则、内容、管理等方面做探索性工作的建议,以期为我国地理信息数据交易的发展提供一定参考。  相似文献   
562.
在我国西南地区,以塔柱状危岩体崩塌为扰动源的涌浪次生灾害时有发生。涌浪特征与其扰动源的初始形状和破坏模式关系密切,塔柱状危岩体由下至上、空中崩解的破坏模式与颗粒柱体崩塌相似。区别于以往多试验采用的刚体材料和利用运动距离获得初始动力状态的涌浪试验,本研究设计并进行了不同高度和宽度的颗粒柱体在不同水深下自然崩塌的物理模型试验。运用PIV技术分析了颗粒体及水体的运动特征,按颗粒体与水体的相互作用关系将整个过程大致分为了3个阶段,并研究了颗粒柱体初始形态对试验结果的影响。结果表明,颗粒柱体崩塌后的残余体积受颗粒体初始形态影响较大,水深对其影响较小。涌浪产生早期,首浪位置与颗粒运动位置有着良好的对应关系;而后,两者的位置逐渐拉开。颗粒柱体高度越高,首浪最大波高出现时的位置与崩塌颗粒群前端位置的差值越大。这可能与流固相互作用后期水体流速大于颗粒流动速度有关。试验产生的涌浪大多具有完整波形,这与柱状颗粒体的散体性及其覆盖堆积特征对水体的作用呈不均匀性有关。涌浪传播过程中,水体在z方向上抬升幅度具有一定的渐变性。试验分析结果揭示了柱状危岩体引发涌浪的机制特点,为涌浪灾害防治提供了基础资料。  相似文献   
563.
滑坡-涌浪灾害威胁沿河两岸居民生产生活安全和航道安全。当前尚缺乏同步提供流固两相运动矢量的相关物理试验分析系统,以深刻分析滑坡-涌浪产生机制。文章提出了基于流固两相识别的粒子图像测速(PIV)技术和试验实现方法。利用2560×1024像素的工业相机,该PIV技术可实现在3 m×1.5 m视窗下最小1.17 mm的空间分辨率和0.01 s内最小0.117 m/s的观测速度。同时,提出了与该系统方法有关的误差来源和克服相关问题的解决方法。利用相关硬件设施示范性构建了滑坡-涌浪两相运动观测平台,并编制了专门的解算软件。对三维柱体颗粒崩塌、二维柱体颗粒崩塌及其涌浪和水下崩塌-涌浪进行了展示性试验,取得了良好效果。该系统可以揭示广泛的岩土体及水体运动全过程,具有很好的应用前景;将为滑坡-涌浪及相关动力学领域研究提供强有力的研究工具。   相似文献   
564.
针对卫星遥感技术在对滨海湿地互花米草监测时受分辨率、气候条件等多种因素限制存在一定局限性且通过单一的影像数据提取互花米草时精度不稳定的问题,提出了基于无人机点云与影像融合的面向对象互花米草提取方法。以黄河三角洲自然保护区为研究对象,获取了该区域的点云和多光谱影像。先将地面滤波后提取的植被点云与多光谱影像进行特征组合优化,然后对融合影像采用FNEA算法进行多尺度分割后采用基于改进的最近邻算法进行面向对象分类,最终得到的互花米草生产者精度和用户精度分别达到了82.53%和86.43%,较未融合点云的提取精度分别提高了22.34%和7.66%,分类结果的总体精度从89.54%提升至92.61%,且融合点云后影像能够有效区分两种生长状态的互花米草,表明本文提出的方法能够有效提高互花米草的提取精度。  相似文献   
565.
郑理科  王健  李志远  梁晓鹏 《测绘科学》2023,(4):140-148+171
针对三维激光扫描技术在获取巷道内壁点云数据时会包含大量非巷道内壁点,无法快速有效地获取巷道围岩形变信息的问题。该文提出一种基于局部最优邻域法向量估算的巷道点云去噪方法,该方法采用自适应邻域半径的主成分分析算法,提高了点云法向量估算的精度和方向一致性,较好地解决了区域生长算法提取巷道内壁点云时存在的孔洞过多与噪声点云去除不彻底的问题,实现了巷道内壁点云较为完整的获取。通过不同类型的巷道点云数据进行验证,结果表明,该方法能够有效地去除非巷道内壁点云,提高巷道内壁点云获取的精度。  相似文献   
566.
基于地面观测和探空资料、NCEP/NCAR 1°×1°再分析资料,利用中尺度分析技术,对2008—2018年暖季(4—10月)发生在浙江中西部地区(简称浙中西)的65次强对流天气过程进行天气形势配置,得到发生在浙中西的雷暴大风、冰雹、短时强降水及混合性强对流的规律特征。结果如下:(1)浙中西强对流天气出现的大尺度环流有5种基本流型配置:干冷气流型(6.2%)、锋生切变型(13.8%)、暖湿气流型(38.5%)、副高边缘型(30.7%)、台风外围型(10.8%),并给出了每种概念模型下的主要物理机制和中尺度特征。(2)分析了不同概念模型下典型强对流天气个例,简要归纳出各种流型下的主要系统配置和演变规律,并将抽象的概念模型应用到实际预报分析中。(3)分析不同流型下强对流的阈值范围,如干冷气流型Iw大风指数平均为26.1 m·s-1,850 hPa与500 hPa温差可达27.5℃,500 hPa相对湿度平均只有15%等,提炼出相似环流形势下不同强天气的主要预报指标,为强对流预报提供量化参考。  相似文献   
567.
568.
续航力与水平速度均是水下滑翔器的重要性能指标。采用单位重量滑翔器、单位水平速度所耗功率作为滑翔效率的评价指标,以一新型扁平型水下滑翔器为研究对象,利用 CFD 计算结合模型试验验证的方法获取了所需的流体动力系数,然后进行了滑翔运动分析及垂直面滑翔运动仿真计算,得到了最优滑翔运动参数。 建立的滑翔性能计算方法对扁平型水下滑翔器水动力性能设计及滑翔运动参数优化有着重要的应用价值。  相似文献   
569.
利用ECMWF 0.25°×0.25°再分析资料,对照浙中西的强对流概念模型,对2019年3月21日发生在浙江中西部地区(简称"浙中西")的一次雷暴大风为主的强对流过程(简称"3·21"过程)进行诊断分析、经验总结。结果表明:该过程符合浙中西锋生切变型的强对流概念模型,出现该过程的环境条件是700 hPa西南急流脉动、850 hPa偏北和偏南两支气流强烈发展、地面低压倒槽和低层湿舌增强;探空曲线表现为上干下湿,对流层中层有明显的干侵入,大风指数Iw、对流有效位能 (Convective Available Potential Energy, CAPE)和500 hPa以下垂直风切变异常偏强形成动力强迫;对比不同强对流天气有不同的预报着眼点,设定阈值或可提高预报警报效率,如雷暴大风天气大风指数Iw > 18.5 m·s-1CAPE> 1 700 J·kg-1、500 hPa的相对湿度小于46 %,冰雹天气则0 ℃层、-20 ℃层高度低于4.6 km和7.6 km且850 hPa与500 hPa气层温差高于26 ℃等,深刻理解该类强对流概念模型,是做好此类致灾性强对流潜势预报的关键点。  相似文献   
570.
利用乌鲁木齐5个国家级气象站1978—2019年5—9月逐日降水资料,统计分析逐候降水集中度(P_(CD))和集中期(P_(CP))变化趋势和时空分布特征。结果表明:近42 a乌鲁木齐汛期降水集中度和集中期均呈微弱下降趋势,表明汛期降水分配趋于均匀,降水集中期呈逐渐提前趋势。汛期降水集中度和集中期空间分布差异显著,降水集中程度由西向东逐渐增大,降水集中期出现时间由北向南逐渐推迟。汛期降水集中度在整个研究期内存在6、15 a左右周期变化,降水集中期存在12 a左右周期变化。对多降水年和少降水年降水集中度和集中期合成分析,发现少降水年降水集中程度高于多降水年,而降水集中期明显晚于多降水年。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号