首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   9篇
测绘学   22篇
大气科学   8篇
地球物理   52篇
地质学   71篇
海洋学   6篇
天文学   29篇
综合类   1篇
自然地理   8篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   13篇
  2017年   13篇
  2016年   19篇
  2015年   12篇
  2014年   12篇
  2013年   14篇
  2012年   9篇
  2011年   11篇
  2010年   2篇
  2009年   11篇
  2008年   10篇
  2007年   16篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1998年   3篇
  1997年   3篇
  1993年   1篇
  1989年   1篇
  1984年   1篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1948年   1篇
  1913年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
91.
92.
93.
Granular soils subjected to flow through their soil skeleton can show a behaviour in which fine particles migrate through the pore space between coarser particles. This process is called internal instability or suffusion. This contribution deals with the numerical analysis of the migration of fine particles in a soil column subjected to fluid flow with unresolved coupled computational fluid dynamics–discrete element method (CFD–DEM) with special regards to the used drag force correlation. The contribution investigates the influence of the Schiller–Naumann model and its extension with a voidage term on the migration behaviour of fine particles. The voidage term is further varied with a parameter, which controls the impact of the change of the void fraction on the drag force. It could be observed that the Schiller–Naumann model does not yield in a suffusive behaviour while the extended models show significant particle migration. Thereby, increasing the impact of the void fraction on the drag force results in stronger particle migration. These results reveal the need for good validation techniques. They indicate how the drag force correlation can be adapted to depict the correct particle migration behaviour.  相似文献   
94.
RWI_TOPO_2015 is a new high-resolution spherical harmonic representation of the Earth’s topographic gravitational potential that is based on a refined Rock–Water–Ice (RWI) approach. This method is characterized by a three-layer decomposition of the Earth’s topography with respect to its rock, water, and ice masses. To allow a rigorous separate modeling of these masses with variable density values, gravity forward modeling is performed in the space domain using tesseroid mass bodies arranged on an ellipsoidal reference surface. While the predecessor model RWI_TOPO_2012 was based on the \(5'\times 5'\) global topographic database DTM2006.0 (Digital Topographic Model 2006.0), the new RWI model uses updated height information of the \(1'\times 1'\) Earth2014 topography suite. Moreover, in the case of RWI_TOPO_2015, the representation in spherical harmonics is extended to degree and order 2190 (formerly 1800). Beside a presentation of the used formalism, the processing for RWI_TOPO_2015 is described in detail, and the characteristics of the resulting spherical harmonic coefficients are analyzed in the space and frequency domain. Furthermore, this paper focuses on a comparison of the RWI approach to the conventionally used rock-equivalent method. For this purpose, a consistent rock-equivalent version REQ_TOPO_2015 is generated, in which the heights of water and ice masses are condensed to the constant rock density. When evaluated on the surface of the GRS80 ellipsoid (Geodetic Reference System 1980), the differences of RWI_TOPO_2015 and REQ_TOPO_2015 reach maximum amplitudes of about 1 m, 50 mGal, and 20 mE in terms of height anomaly, gravity disturbance, and the radial–radial gravity gradient, respectively. Although these differences are attenuated with increasing height above the ellipsoid, significant magnitudes can even be detected in the case of the satellite altitudes of current gravity field missions. In order to assess their performance, RWI_TOPO_2015, REQ_TOPO_2015, and RWI_TOPO_2012 are validated against independent gravity information of current global geopotential models, clearly demonstrating the attained improvements in the case of the new RWI model.  相似文献   
95.
96.
Although the protective role of leaf litter cover against soil erosion is known for a long time, little research has been conducted on the processes involved. Moreover, the impact of soil meso‐ and macrofauna within the litter layer on erosion control is not clear. To investigate how leaf litter cover and diversity as well as meso‐ and macrofauna influence sediment discharge in subtropical forest ecosystems, a field experiment has been carried out in Southeast China. A full‐factorial random design with 96 micro‐scale runoff plots and 7 domestic leaf species was established and erosion was triggered by a rainfall simulator. Our results demonstrate that leaf litter cover protects soil from erosion (?82 % sediment discharge on leaf covered plots) by rainfall and this protection is removed as litter decomposes. The protective effect is influenced by the presence or absence of soil meso‐ and macrofauna. Fauna presence increases soil erosion rates significantly by 58 %, while leaf species diversity shows a non‐significant negative trend. We assume that the faunal effect arises from arthropods slackening and processing the soil surface as well as fragmenting and decomposing the protecting leaf litter covers. Even though the diversity level did not show a significant influence, single leaf species in monocultures show rather different impacts on sediment discharge and thus, erosion control. In our experiment, runoff plots with leaf litter from Machilus thunbergii showed the highest sediment discharge (68.0 g m?2) whereas plots with Cyclobalanopsis glauca showed the smallest rates (7.9 g m?2). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
97.
Gravity gradient measurements from ESA’s satellite mission Gravity field and steady-state Ocean Circulation Explorer (GOCE) contain significant high- and mid-frequency signal components, which are primarily caused by the attraction of the Earth’s topographic and isostatic masses. In order to mitigate the resulting numerical instability of a harmonic downward continuation, the observed gradients can be smoothed with respect to topographic-isostatic effects using a remove–compute–restore technique. For this reason, topographic-isostatic reductions are calculated by forward modeling that employs the advanced Rock–Water–Ice methodology. The basis of this approach is a three-layer decomposition of the topography with variable density values and a modified Airy–Heiskanen isostatic concept incorporating a depth model of the Mohorovi?i? discontinuity. Moreover, tesseroid bodies are utilized for mass discretization and arranged on an ellipsoidal reference surface. To evaluate the degree of smoothing via topographic-isostatic reduction of GOCE gravity gradients, a wavelet-based assessment is presented in this paper and compared with statistical inferences in the space domain. Using the Morlet wavelet, continuous wavelet transforms are applied to measured GOCE gravity gradients before and after reducing topographic-isostatic signals. By analyzing a representative data set in the Himalayan region, an employment of the reductions leads to significantly smoothed gradients. In addition, smoothing effects that are invisible in the space domain can be detected in wavelet scalograms, making a wavelet-based spectral analysis a powerful tool.  相似文献   
98.
99.
100.
Experiments were conducted to investigate (i) the rate of O-isotope exchange between SO4 and water molecules at low pH and surface temperatures typical for conditions of acid mine drainage (AMD) and (ii) the O- and S-isotope composition of sulfates produced by pyrite oxidation under closed and open conditions (limited and free access of atmospheric O2) to identify the O source/s in sulfide oxidation (water or atmospheric molecular O2) and to better understand the pyrite oxidation pathway. An O-isotope exchange between SO4 and water was observed over a pH range of 0–2 only at 50 °C, whereas no exchange occurred at lower temperatures over a period of 8 a. The calculated half-time of the exchange rate for 50 °C (pH = 0 and 1) is in good agreement with former experimental data for higher and lower temperatures and excludes the possibility of isotope exchange for typical AMD conditions (T  25 °C, pH  3) for decades.Pyrite oxidation experiments revealed two dependencies of the O-isotope composition of dissolved sulfates: O-isotope values decreased with longer duration of experiments and increasing grain size of pyrite. Both changes are interpreted as evidence for chemisorption of molecular O2 to pyrite surface sites. The sorption of molecular O2 is important at initial oxidation stages and more abundant in finer grained pyrite fractions and leads to its incorporation in the produced SO4. The calculated bulk contribution of atmospheric O2 in the dissolved SO4 reached up to 50% during initial oxidation stages (first 5 days, pH 2, fine-grained pyrite fraction) and decreased to less than 20% after about 100 days. Based on the direct incorporation of molecular O2 in the early-formed sulfates, chemisorption and electron transfer of molecular O2 on S sites of the pyrite surface are proposed, in addition to chemisorption on Fe sites. After about 10 days, the O of all newly-formed sulfates originates only from water, indicating direct interaction of hydroxyls from water with S at the anodic S pyrite surface site. Then, the role of molecular O2 is as proposed in previous studies: acting as electron acceptor only at the cathodic Fe pyrite surface site for oxidation of Fe(II) to Fe(III).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号