首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   9篇
测绘学   22篇
大气科学   8篇
地球物理   52篇
地质学   71篇
海洋学   6篇
天文学   29篇
综合类   1篇
自然地理   8篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   13篇
  2017年   13篇
  2016年   19篇
  2015年   12篇
  2014年   12篇
  2013年   14篇
  2012年   9篇
  2011年   11篇
  2010年   2篇
  2009年   11篇
  2008年   10篇
  2007年   16篇
  2006年   7篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1998年   3篇
  1997年   3篇
  1993年   1篇
  1989年   1篇
  1984年   1篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1948年   1篇
  1913年   1篇
排序方式: 共有197条查询结果,搜索用时 464 毫秒
81.
We analyze the evolution of the flare/postflare-loop system in the two-ribbon flare of November 3, 2003, utilizing multi-wavelength observations that cover the temperature range from several tens of MK down to 104 K. A non-uniform growth of the loop system enables us to identify analogous patterns in the height–time, h(t), curves measured at different temperatures. The “knees,” “plateaus,” and “bends” in a higher-temperature curve appear after a certain time delay at lower heights in a lower-temperature curve. We interpret such a shifted replication as a track of a given set of loops (reconnected field lines) while shrinking and cooling after being released from the reconnection site. Measurements of the height/time shifts between h(t) curves of different temperatures provide a simultaneous estimate of the shrinkage speed and cooling rate in a given temperature domain, for a period of almost ten hours after the flare impulsive phase. From the analysis we find the following: (a) Loop shrinkage is faster at higher temperatures – in the first hour of the loop-system growth, the shrinkage velocity at 5 MK is 20 – 30 km s−1, whereas at 1 MK it amounts to 5 km s−1; (b) Shrinking becomes slower as the flare decays – ten hours after the impulsive phase, the shrinkage velocity at 5 MK becomes 5 km s−1; (c) The cooling rate decreases as the flare decays – in the 5 MK range it is 1 MK min−1 in the first hour of the loop-system growth, whereas ten hours later it decreases to 0.2 MK min−1; (d) During the initial phase of the loop-system growth, the cooling rate is larger at higher temperatures, whereas in the late phases the cooling rate apparently does not depend on the temperature; (e) A more detailed analysis of shrinking/cooling around one hour after the impulsive phase reveals a deceleration of the loop shrinkage, amounting to ā ≈ 10 m s−2 in the T < 5 MK range; (f) In the same interval, conductive cooling dominates down to T ≈ 3 MK, whereas radiation becomes dominant below T ≈ 2 MK; (g) A few hours after the impulsive phase, radiation becomes dominant across the whole T < 5 MK range. These findings are compared with results of previous studies and discussed in the framework of relevant models.  相似文献   
82.
A constitutive model for granular materials is developed within the framework of strain–hardening elastoplasticity, aiming at describing some of the macroscopic effects of the degradation processes associated with grain crushing. The central assumption of the paper is that, upon loading, the frictional properties of the material are modified as a consequence of the changes in grain size distribution. The effects of these irreversible microscopic processes are described macroscopically as accumulated plastic strain. Plastic strain drives the evolution of internal variables which model phenomenologically the changes of mechanical properties induced by grain crushing by controlling the geometry of the yield locus and the direction of plastic flow. An application of the model to Pozzolana Nera is presented. The stress–dilatancy relationship observed for this material is used as a guidance for the formulation of hardening laws. One of the salient features of the proposed model is its capability of reproducing the stress–dilatancy behaviour observed in Pozzolana Nera, for which the minimum value of dilatancy always follows the maximum stress ratio experienced by the material. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
83.
84.
85.
Solar Physics - The soft X-ray background flux (XBF) based on GOES 1–8&;nbsp;Å measurements for the period 1975–2003 is studied. There is strong evidence that in the XBF the...  相似文献   
86.
The results of an extensive programme of laboratory testing on intact and reconstituted samples of a pyroclastic weak rock from the volcanic complex of the Colli Albani (Central Italy) are presented. The deposit is known as Pozzolana Nera and may be assimilated to a bonded coarse grained material. The nature of bonds and the micro‐structural features were examined by means of diffractometry, optical and electron microscopy. As bonds are made of the same constituents of grains and aggregates of grains, bond deterioration and particles breakage upon loading are indistinguishable features of the mechanical behaviour. The testing programme consisted mainly of one‐dimensional and drained and undrained triaxial compression tests in a wide range of confining pressures up to 58 MPa. As confining stress increases, the mechanical behaviour of the material changes from brittle and dilatant to ductile and contractant; for both brittle and ductile behaviour failure is associated with the formation of shear surfaces separating the sample in several parts at the end of test. The experimental stress–dilatancy relationships are compared with the classical stress–dilatancy theories for a purely frictional material and for a material with friction and cohesion between particles. The analysis of the data indicates that peak strength results from the interplay between degradation of inter‐particle bonds, increasing friction between particles and increasing rate of dilation. Copyright © 2001 John Wiley & Son, Ltd.  相似文献   
87.
88.
In preparation of activities planned for the realization of the Global Geodetic Observing System (GGOS), a group of German scientists has carried out a study under the acronym GGOS-D which closely resembles the ideas behind the GGOS initiative. The objective of the GGOS-D project was the investigation of the methodological and information-technological realization of a global geodetic-geophysical observing system and especially the integration and combination of the space geodetic observations. In the course of this project, highly consistent time series of GPS, VLBI, and SLR results were generated based on common state-of-the-art standards for modeling and parameterization. These series were then combined to consistently and accurately compute a Terrestrial Reference Frame (TRF). This TRF was subsequently used as the basis to produce time series of station coordinates, Earth orientation, and troposphere parameters. In this publication, we present results of processing algorithms and strategies for the integration of the space-geodetic observations which had been developed in the project GGOS-D serving as a prototype or a small and limited version of the data handling and processing part of a global geodetic observing system. From a comparison of the GGOS-D terrestrial reference frame results and the ITRF2005, the accuracy of the datum parameters is about 5?C7?mm for the positions and 1.0?C1.5?mm/year for the rates. The residuals of the station positions are about 3?mm and between 0.5 and 1.0?mm/year for the station velocities. Applying the GGOS-D TRF, the offset of the polar motion time series from GPS and VLBI is reduced to 50 ??as (equivalent to 1.5?mm at the Earth??s surface). With respect to troposphere parameter time series, the offset of the estimates of total zenith delays from co-located VLBI and GPS observations for most stations in this study is smaller than 1.5?mm. The combined polar motion components show a significantly better WRMS agreement with the IERS 05C04 series (96.0/96.0???as) than VLBI (109.0/100.7???as) or GPS (98.0/99.5???as) alone. The time series of the estimated parameters have not yet been combined and exploited to the extent that would be possible. However, the results presented here demonstrate that the experiences made by the GGOS-D project are very valuable for similar developments on an international level as part of the GGOS development.  相似文献   
89.
Slates are internationally known as roof and façade-cladding material since prehistoric times. The methods required to mine and manufacture these dimensional stones are relatively simple in comparison to those utilized in granitic dimensional stones. This has led to a worldwide rentable commercialization of slate in the last centuries and also to the development of characteristic cultural landscapes. In Uruguay several slates are mined and used in architecture, especially as façade cladding and floor slabs. The most important slates regarding their production and utilization are the dolomitic slates. These dolomitic slates are associated with the Neoproterozoic thrust and fold belt of the Dom Feliciano belt. Representative samples have been geochemically and petrographically characterized, as well as petrophysically and petromechanically analyzed. The petrophysical and petromechanical properties were investigated in a very systematic way with respect to the new European standards, showing values comparable to those registered for internationally known slates. Detailed structural and deposit analysis were carried out in Uruguay in order to evaluate the dolomitic slate deposits. The slates are linked to calc-silicate strata in a greenschist facies volcano-sedimentary sequence and the deposits are located in the limb of a regional fold, where bedding and cleavage are parallel. The main lithotype is a layered and fine-grained dolomitic slate with a quite diverse palette of colors: light and dark green, gray, dark gray, reddish and black. The mined slate is split into slabs 0.5–2 cm thick. In the past, the average production in Uruguay was around 4,000 tons/year and a historical maximum of 13,000 tons was reached in 1993 (Oyhantçabal et al. in Z dt Ges Geowiss 158(3):417–428, 2007). The oscillations in the regional demand were the cause of several flourishing and decay cycles in the activity, but our investigation shows a considerable volume of indicated resources and therefore a very good potential.  相似文献   
90.
We report temperatures in Venus’ upper mesosphere/lower thermosphere, deduced from reanalyzing very high resolution infrared spectroscopy of CO2 emission lines acquired in 1990 and 1991. Kinetic temperatures at ~110 km altitude (0.15 Pa) are derived from the Doppler width of fully-resolved single line profiles measured near 10.4 μm wavelength using the NASA GSFC Infrared Heterodyne Spectrometer (IRHS) at the NASA IRTF on Mauna Kea, HI, close to Venus inferior conjunction and two Venus solstices. Measured temperatures range from ~200 to 240 K with uncertainty typically less than 10 K. Temperatures retrieved from similar measurement in 2009 using the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) at the NOAO McMath Telescope at Kitt Peak, AZ are 10–20 K lower. Temperatures retrieved more recently from the SOIR instrument on Venus EXpress are consistent with these results when the geometry of observation is accounted for. It is difficult to compare ground-based sub-mm retrievals extrapolated to 110 km due to their much larger field of view, which includes the night side regions not accessible to infrared heterodyne observations. Temperature variability appears to be high on day-to-day as well as longer timescales. Observed short term and long term variability may be attributed to atmospheric dynamics, diurnal variability and changes over solar activity and seasons. The Venus International Reference Atmosphere (VIRA) model predicts cooler temperatures at the sampled altitudes in the lower thermosphere/upper mesosphere and is not consistent with these measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号