首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
大气科学   7篇
地球物理   36篇
地质学   40篇
海洋学   35篇
天文学   34篇
自然地理   20篇
  2022年   2篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2005年   5篇
  2004年   8篇
  2003年   10篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有173条查询结果,搜索用时 281 毫秒
51.
Olivine single crystals have been deformed under high confining pressure (P=5?GPa) and temperature (T=1400?°C) conditions in a multi-anvil high pressure apparatus. NaCl, diamond and NaCl+diamond (2:1 by volume) powders were encapsulated along with the olivine single crystals in order to produce a range of stress states. The change of the non-hydrostatic stress transmitted to the olivine samples, enclosed within these three different media, during heating has been evaluated by observation of dislocation microstructure and density. A higher differential stress can be generated with diamond powder (0.1?GPa) than with NaCl powder (0.02?GPa). Although an intermediate differential stress between 0.1?GPa and 0.02?GPa had been expected to be generated using NaCl+diamond powder, the generation of non-hydrostatic stress in the olivine sample was unsuccessful. This may be caused by the fact that compaction (or sintering) proceeded in the capsule throughout the experiments. The most important finding of these experiments is that a constant non-hydrostatic stress can be applied to a sample under very high pressure and temperature conditions within the multi-anvil high pressure apparatus for the duration of the experiment. This approach is therefore suitable for investigating the steady-state rheological properties of mantle minerals at near-mantle conditions.  相似文献   
52.
We conducted full-depth hydrographic observations in the southwestern region of the Northwest Pacific Basin in September 2004 and November 2005. Deep-circulation currents crossed the observation line between the East Mariana Ridge and the Shatsky Rise, carrying Lower Circumpolar Deep Water westward in the lower deep layer (θ<1.2 °C) and Upper Circumpolar Deep Water (UCDW) and North Pacific Deep Water (NPDW) eastward in the upper deep layer (1.3–2.2 °C). In the lower deep layer at depths greater than approximately 3500 m, the eastern branch current of the deep circulation was located south of the Shatsky Rise at 30°24′–30°59′N with volume transport of 3.9 Sv (1 Sv=106 m3 s−1) in 2004 and at 30°06′–31°15′N with 1.6 Sv in 2005. The western branch current of the deep circulation was located north of the Ogasawara Plateau at 26°27′–27°03′N with almost 2.1 Sv in 2004 and at 26°27′–26°45′N with 2.7 Sv in 2005. Integrating past and present results, volume transport southwest of the Shatsky Rise is concluded to be a little less than 4 Sv for the eastern branch current and a little more than 2 Sv for the western branch current. In the upper deep layer at depths of approximately 2000–3500 m, UCDW and NPDW, characterized by high and low dissolved oxygen, respectively, were carried eastward at the observation line by the return flow of the deep circulation composing meridional overturning circulation. UCDW was confined between the East Mariana Ridge and the Ogasawara Plateau (22°03′–25°33′N) in 2004, whereas it extended to 26°45′N north of the Ogasawara Plateau in 2005. NPDW existed over the foot and slope of the Shatsky Rise from 29°48′N in 2004 and 30°06′N in 2005 to at least 32°30′N at the top of the Shatsky Rise. Volume transport of UCDW was estimated to be 4.6 Sv in 2004, whereas that of NPDW was 1.4 Sv in 2004 and 2.6 Sv in 2005, although the values for NPDW may be slightly underestimated, because they do not include the component north of the top of the Shatsky Rise. Volume transport of UCDW and NPDW southwest of the Shatsky Rise is concluded to be approximately 5 and 3 Sv, respectively. The pathways of UCDW and NPDW are new findings and suggest a correction for the past view of the deep circulation in the Pacific Ocean.  相似文献   
53.
54.
Summary. Two record sections have been prepared for a series of explosions near Lake Biwa, south-western Honshu, Japan. The record sections cover both the array stations and the network of microearthquake stations that are distributed throughout the area. This enabled us to detect for the first time in the Japanese islands the phase reflected at the Mohorovicić discontinuity. Until now the weakness and obscurity of the phase has made it difficult to detect. We were able to overcome this problem by processing the seismograms to enhance the phase. Our work leads us to propose that the surface of the Mohorović discontinuity may be divided into pieces by a number of deep faults, while a thin layer of ultrabasic rock in the lower crust may account for the weakness of the signal.  相似文献   
55.
Three major geometric factors which are likely to influence theoretical interpretation of planetary polarization measurements, viz., observer—planet distance, horizontal inhomogeneity of planetary disk, and deviation from a spherical body, are investigated.The distance effect is examined for regional as well as global polarizations. For convenience of analysis, the expressions for zenith and azimuth angles of incident and emergent light appropriate for a snap-shot observation are derived as explicit functions of distance between observer and planet. Sample computations for Venus indicate that regional polarization near the planetary limb is significantly affected by the observer's distance. This effect should be particularly noticeable when an observation is made at a phase angle around which the single scattering polarization of atmospheric scattering agents exhibits a steep variation. The global polarization at large phase angles (measured at disk-center) is gradually moved toward smaller phase angles, as the observer approaches the planet. Any narrow polarization features such as rainbow and glory at small phase angles are heavily smoothed out.The effects of horizontal inhomogeneity are investigated with a planetary disk having highly polarizing regions at high latitudes. Comparison of theoretical global polarization computed for such a disk with the Pioneer Venus OCPP measurements shows a possible change in cloud-haze stratification approximately at 50° latitude, consistent with other imaging observations. An approximate analytical representation of residual polarization at zero phase angle is then derived to compare to the numerical results for Venus. An attempt is also made to explain the relatively large magnitude of residual polarization observed on Jupiter.Finally, to study the effects of nonsphericity of planetary body, the global polarizations are computed for a spheroidal planet. The global polarization tends to increase as the planet's oblateness increases. However, for Jupiter and Saturn, such effect may be of secondary importance.  相似文献   
56.
The slowly varying components (S-components) of the solar radio emission were observed by a 17 Gc/s grating interferometer. In combination with 4 Gc/s data, it is deduced that the source of the 17 Gc/s S-component is optically thin.  相似文献   
57.
Examining the evolution of fracture permeability under stressed and temperature-elevated conditions, a series of flow-through experiments on a single rock fracture in granite has been conducted under confining pressures of 5 and 10 MPa, under differential water pressures ranging from 0.04 to 0.5 MPa, and at temperatures of 20–90 °C, for several hundred hours in each experiment. Measurements of fluid and dissolved mass fluxes, and post-experimental microscopy, were conducted to constrain the progress of mineral dissolution and/or precipitation and to examine its effect on transport properties. Generally, the fracture aperture monotonically decreased with time at room temperature, and reached a steady state in relatively short periods (i.e., <400 h). However, once the temperature was elevated to 90 °C, the aperture resumed decreasing and kept decreasing throughout the rest of the experimental periods. This reduction may result from the removal of the mineral mass from the bridging asperities within the fracture. Post-experimental observations by scanning electron microscopy, coupled with energy dispersive X-ray spectroscopy (SEM-EDX), revealed the formation of several kinds of secondary minerals such as silica and calcite. However, the precipitated minerals seemed to have had little influence on the flow characteristics within the fracture, because the precipitation was limited to quite local and small areas. The evolving rates and ultimate magnitudes of the fracture aperture are likely to be controlled by the stress exerted over the contacting asperities and temperatures, and by the prescribed flow conditions. Thus, this complex behavior should be attributed to the coupled chemically- and mechanically-induced effect. A coupled chemo–mechano conceptual model, accounting for pressure and free-face dissolutions, is presented in this paper to follow the evolution of the fracture permeability observed in the flow-through experiments. This model addresses the two dissolution processes at the contacting asperities and the free walls within the fractures, and is also capable of describing multi-mineral dissolution behavior. The model shows that the evolution of a fracture aperture (or related permeability) and of element concentrations may be followed with time under arbitrary temperature and pressure conditions. The model predictions for the evolving fracture aperture and elements concentrations show a relatively good agreement with the experimental measurements, although it is not possible to replicate the abrupt reduction observed in the early periods of the experiments, which is likely to be due to an unaccounted mechanism of more stress-mediated fracture compaction driven by the fracturing of the propping asperities.  相似文献   
58.
59.
Characteristic time scales relevant to the accumulation of planetesimals in a gaseous nebula are examined and the accumulation toward the planets is simulated by numerically solving a growth equation for a mass distribution function. The eccentricity and inclination of planetesimals are assumed to be determined by a balance between excitation due to mutual gravitational scattering and dissipation due to gas drag. Two kinds of mass motion in the radial direction, i.e., diffusion due to mutual scattering and inward flow due to gas drag, are both taken into account. The diffusion is shown to be effective in later stages with a result of accelerating the accumulation. As to the coalescent collision cross section, the usual formula for a binary encounter in a free space is used but the effect of tidal disruption which increases substantially the cross section is taken into account. Numerical results show that the gravitational enhancement factor (i.e., the so-called “Safronov number”), contained in the cross section formula, always takes a value of the order of unity but the accumulation proceeds relatively rapidly owing to the effects of radial diffusion and tidal disruption. That is, a proto-Earth, a proto-Jupiter, and a proto-Saturn with masses of 1×1027 g are formed in 5×106, 1×107, and 1.6×108 years, respectively. Also, a tentative numerical computation for the Neptune formation shows that a proto-Neptune with the same mass requires a long accumulation time, 4.6×109 years. Finally, the other effects which are expected to reduce the above growth times further are discussed.  相似文献   
60.
Astrophysics and Space Science - Electrostatic (ES) waves generated in space plasmas, e.g., Langmuir and ion-acoustic waves, are subject to multiple applications, such as plasma diagnosis,...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号