首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   3篇
  国内免费   3篇
测绘学   7篇
大气科学   5篇
地球物理   32篇
地质学   41篇
天文学   19篇
综合类   2篇
自然地理   5篇
  2023年   1篇
  2022年   5篇
  2021年   3篇
  2020年   6篇
  2019年   5篇
  2018年   13篇
  2017年   13篇
  2016年   5篇
  2015年   4篇
  2014年   8篇
  2013年   7篇
  2012年   7篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   4篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有111条查询结果,搜索用时 46 毫秒
91.
Soil texture is a key variable that reflect a number of soil properties such as soil permeability, water holding capacity, nutrient storage and availability, and soil erosion. The main objective of this study was to produce the kriged maps of soils of the Shahrekord region, central Iran. One hundred four soil samples were collected on a 375-m2 sampling grid from the depths of 0–30, 30–60, and 60–100 centimeter, and their particle sizes were determined using hydrometer method. The results showed a moderately spatial correlation in the soil particles among sampling soil layers and across the study area. Moreover, increasing clay and therewith observation of heavier soil textures is evident from surface to subsurface layers of the soils in the studied area due to rainfall and/or irrigation agriculture. These findings indicated that study of the soil texture variation with depth can be used as a clue for site-specific management and precision agriculture. Moreover, we suggest further analysis by using other data layers like topographical parameters, land use, parent material, soil erosion, and any other information which might influence the spatial distribution of soil texture.  相似文献   
92.
Estimation of flood in basins with poor condition of hydrometric stations as in quantity and quality is a dominant problem around the world, mainly in developing country where lack of funds and human resources cause more limitation in number of gauging stations. One of the areas that experience frequent floods and also suffer from small number of stations in Iran is Gorganrood basin. So there is a great need for the estimation and prediction of runoff in this area to prevent any future floods. Due to insufficient station in this area, direct prediction of flood is not applicable. Regional flood frequency analysis is a practical and widely used solution for these situations, which involves the identification of homogenous regions. Gorganrood region was hydrologically homogenized according to the extracted parameters that influence the floods. One of these parameters was Normalized Difference Vegetation Index (NDVI) driven from MODIS images. Curvature is another parameter that relates to topographic attributes. From factor analysis, the most appropriate variables were selected. According to these parameters (NDVI, curvature, area, slope…), the regions were classified into homogenous regions. For the purpose of homogenization, hierarchical (wards) clustering, fuzzy clustering and Kohonen method were applied. L-moment technique was used for the investigation of the results. The heterogeneity measure for one of the groups (Group 1) was more than two; therefore some modifications were applied. The region was grouped into two homogenous subregions. All of the clustering methods showed same results. The models showed that class 4 of NDVI is influential on flood in some return periods. The resulted models can be applied in future studies in different aspects of practical hydrology.  相似文献   
93.
One of the most important water-resources management strategies for arid lands is managed aquifer recharge (MAR). In establishing a MAR scheme, site selection is the prime prerequisite that can be assisted by geographic information system (GIS) tools. One of the most important uncertainties in the site-selection process using GIS is finite ranges or intervals resulting from data classification. In order to reduce these uncertainties, a novel method has been developed involving the integration of multi-criteria decision making (MCDM), GIS, and a fuzzy inference system (FIS). The Shemil-Ashkara plain in the Hormozgan Province of Iran was selected as the case study; slope, geology, groundwater depth, potential for runoff, land use, and groundwater electrical conductivity have been considered as site-selection factors. By defining fuzzy membership functions for the input layers and the output layer, and by constructing fuzzy rules, a FIS has been developed. Comparison of the results produced by the proposed method and the traditional simple additive weighted (SAW) method shows that the proposed method yields more precise results. In conclusion, fuzzy-set theory can be an effective method to overcome associated uncertainties in classification of geographic information data.  相似文献   
94.
95.
96.
Lack of accuracy of rainfall-runoff simulation (RRS) remains critical for some applications. Among various sources of uncertainty, precipitation plays a particular role. Rainfall rates as the main input data of RRS are of the first factors controlling the accuracy. In addition to the depth, spatial and temporal distributions of rainfall impact the flood discharge. Most of the previous studies on RRS uncertainty have ignored rainfall spatial distribution, where in large catchments, it is necessary to be modeled explicitly. Karoon III is one most important basin of the Iran because of the Karoon III dam in the outlet. In the present work, effect of spatial correlation of rainfall on HEC-HMS (SMA) continuous RRS uncertainty is evaluated using 2variate copula (2copula). Monte Carlo simulation (MCS) approach was used to consider the rainfall spatial dependence. To reduce the computational expense, sampling efficiency and convergence for MCS, Latin hypercube sampling (LHS) was used. Copula functions consider wide range of marginal probability distribution functions (PDFs), eliminating limits of regular join PDFs. For this aim, two scenarios were investigated. In the first scenario, sub-basin rainfall was considered independent, and in the second scenario, 2copula was adopted to model spatial correlation of rainfall. Dimensionless rainfall depths were calculated for each sub-basin, and the PDFs were determined. The generated random dimensionless rainfalls were reweighted and multiplied by watershed’s mean rainfall value. Stochastic Climate Library was used to generate continuous daily rainfalls. Sampling from dimensionless rainfalls using LHS algorithm, 100 runs of calibrated model-simulated 100 flows for each day following MCS, and 80 % certainty bound was calculated. Results showed that considering dependence decreased 18 % of the maximum uncertainty bound width, so the methodology could be recommended for decreasing predicted runoff error.  相似文献   
97.
Cost and time are the two most important factors conditioning soil surveys. Since these surveys provide basic information for modelling and management activities, new methods are needed to speed the soil-mapping process with limited input data. In this study, the polypedon concept was used to extend the spatial representation of sampled pedons (point data) in order to train artificial neural networks (ANNs) for digital soil mapping (DSM). The input database contained 97 soil profiles belonging to 7 different soil series and 15 digital elevation model (DEM) attributes. Pedons were represented in raster format as one-cell areas. The corresponding polypedons were then spatially represented by neighbouring raster cells (e.g. 2 × 2, … up to 6 × 6 cells). The primary database contained 97 pedons (97 cells) that were extended up to 3492 cells (in the case of 6 × 6-cell regions). This approach employed test and validation areas to calculate the respective accuracies of data interpolation and extrapolation. The results showed increased accuracies in training and interpolation (test area) but a poor level of accuracy in the extrapolation process (validation area). However, the overall precision of all predictions increased considerably. Using only topographic attributes for extrapolation was not sufficient to obtain an accurate soil map. To improve prediction, other soil-forming factors, such as landforms and/or geology, should also be considered as input data in the ANN. The proposed method could help to improve existing soil maps by using DSM results in areas with limited soil data and to save time and money in soil survey work.  相似文献   
98.
Interest in semiarid climate forecasting has prominently grown due to risks associated with above average levels of precipitation amount. Longer-lead forecasts in semiarid watersheds are difficult to make due to short-term extremes and data scarcity. The current research is a new application of classification and regression trees (CART) model, which is rule-based algorithm, for prediction of the precipitation over a highly complex semiarid climate system using climate signals. We also aimed to compare the accuracy of the CART model with two most commonly applied models including time series modeling (ARIMA), and adaptive neuro-fuzzy inference system (ANFIS) for prediction of the precipitation. Various combinations of large-scale climate signals were considered as inputs. The results indicated that the CART model had a better results (with Nash–Sutcliffe efficiency, NSE?>?0.75) compared to the ANFIS and ARIMA in forecasting precipitation. Also, the results demonstrated that the ANFIS method can predict the precipitation values more accurately than the time series model based on various performance criteria. Further, fall forecasts ranked “very good” for the CART method, while the ANFIS and the time series model approximately indicated “satisfactory” and “unsatisfactory” performances for all stations, respectively. The forecasts from the CART approach can be helpful and critical for decision makers when precipitation forecast heralds a prolonged drought or flash flood.  相似文献   
99.
The Lower Jurassic Ab-Haji Formation consists of siliciclastic strata which are widespread and superbly exposed across the Tabas and Lut blocks of east-central Iran. The formation records the geodynamic history of central Iran during the Early Jurassic in the aftermath of the main Cimmerian event (near the Triassic–Jurassic boundary) through its sedimentary facies and stratigraphic architecture and allows palaeogeographic and palaeoenvironmental reconstructions. We measured and studied three well-exposed outcrop sections and identified lithofacies and facies associations (fluvial plain, delta plain, delta front, prodelta, and shallow-marine siliciclastic shelf). The integration of all geological, stratigraphic, and sedimentological data shows a west-to-east continental-to-marine gradient within the Ab-Haji Formation. Based on thickness variations, lateral facies changes, palaeocurrent patterns, and changes in the nature of the basal contact of the Ab-Haji Formation on the Tabas and Lut blocks, we locate the fault-bounded Yazd Block in the west and the Shotori Swell at the eastern edge of the Tabas Block as provenance regions. The pattern of thickness variations, rapid east–west facies changes, and provenance is best explained by a tectonic model invoking large tilted fault blocks in an extensional basin. The basal unit shows distinct increase in grain size at the base of the Ab-Haji Formation, similar to the Shemshak Group of the Alborz Mountains (the base of the Alasht Formation) and the non-marine time-equivalent succession of the Binalud Mountains of northeastern Iran. This grain size pattern may have been caused by rapid source area uplift due to slab break-off of the subducted Iran plate in the course of the Cimmerian collision in east-central Iran.  相似文献   
100.
In this study, machine learning methods such as neural networks, random forests, and Gaussian processes are applied to the estimation of copper grade in a mineral deposit. The performance of these methods is compared to geostatistical techniques, such as ordinary kriging and indicator kriging. To ensure that these comparisons are realistic and relevant, the predictive accuracy is estimated on test instances located in drill holes that are different from the training data. The results of an extensive empirical study in the Sarcheshmeh porphyry copper deposit in Southeastern Iran illustrate that specially designed Gaussian processes with a symmetric standardization of the spatial location inputs and an anisotropic kernel yield the most accurate predictions. Furthermore, significant improvements are obtained when, besides location, information on the rock type is included in the set of predictor variables. This observation highlights the importance of carrying out detailed studies of the geological composition of the deposit to obtain more accurate ore grade predictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号