首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
New observations of the umbral limb-darkening are presented. We find a real and significant decrease in the umbra/photosphere intensity ratio towards the limb. This result contrasts the findings of previous authors and we believe this to be the first time such a decrease is reported. Our conclusion is based on broad band pinhole photometer intensity observations of 22 large sunspots covering the spectral region 0.387–2.35 m. The data are selected from measurements on approximately 600 days during the last 15.5 yr. The application of the limb-darkening data to the study of the temperature stratification in the umbra is briefly discussed. The observations confirm the suggestion that the umbra/photosphere intensity ratio seems to be a linear function of the phase in the solar cycle.  相似文献   

2.
Observations of sunspot transition region oscillations   总被引:1,自引:0,他引:1  
Brynildsen  N.  Maltby  P.  Leifsen  T.  Kjeldseth-Moe  O.  Wilhelm  K. 《Solar physics》2000,191(1):129-159
Oscillations with a period of 3 minutes are observed in the transition region of six sunspots with the Solar and Heliospheric Observatory - SOHO joint observing programme for velocity fields in sunspot regions. Observations of the transition region lines Ov 629 and Nv 1238, 1242 with the SUMER instrument show significant differences in the amplitude of the 3-minute oscillations from one sunspot to another, both in intensity and line-of-sight velocity. In four sunspots the central part of the umbra is observed. Two of these sunspots show coincidence between the maxima in peak line intensity and velocity directed towards the observer, as is expected for an upward-propagating acoustic wave. The two other sunspots show large oscillation amplitudes and a difference of 25° between maxima in intensity and blue shift. The possible effect of partial wave reflection on the observed phase relation is discussed. For one sunspot only a part of the umbra, close to the penumbra, was observed and the observations show a difference of 50° between maxima in intensity and blueshift. For the smallest sunspot the observations are found to be contaminated by contributions from an area without oscillations. Observed oscillations in line width are small, but probably significant in two sunspots. The observations of NOAA 8378 allow us to compare simultaneous recordings of the oscillations in the chromospheric Siii 1260 line with the oscillations in the transition region lines. We question the suggestion by Fludra (1999) that the sunspot transition region oscillations are a typical feature of the sunspot plumes.  相似文献   

3.
An analysis of the local sources (LS) structure of the S-component of solar radio emission confirms the presence of a core component which is characterized by strong circular polarization and a steep growing spectrum at shorter centimeter wavelengths. These details coincide in position with the sunspots' umbra and their height above the photosphere does not generally exceed about 2000 km. Gyroresonance emission of thermal electrons of the corona is generally accepted as being responsible for this type of emission. The spectral and polarization observations of LS made with RATAN-600 using high resolution in the wavelength range 2.0–4.0 cm, allow us to measure the maximum magnetic fields of the corresponding sunspots at the height of the chromosphere-corona transition region (CCTR). This method is based on determining the short wavelength limit of gyroresonance emission of the LS and relating it to the third harmonic of gyrofrequency.An analysis of a large number of sunspots and their LS (core component) has shown a good correlation between radio magnetic fields near the CCTR and optical photospheric ones. The magnetic field in CCTR above a sunspot is found only 10 to 20% lower than in the photosphere. The resulting gradient of the field strength is not less than 0.25 G km–1. This result seems to contradict the lower values of magnetic fields generally found above sunspots using the chromospheric H line. Some possible ways of overcoming this difficulty are proposed.  相似文献   

4.
Emission core widths of K Ca ii line in the umbra and penumbra of 9 sunspots and in their vicinity are measured. All sunspots are located near the solar disc center. Data on variation of widths W K along the mean sunspot radius are obtained. Values W K in the umbra and penumbra centers are equal or somewhat less than on stars of the same luminosity.  相似文献   

5.
We report on three sequences of high-resolution white-light and magnetogram observations obtained in the summer of 1989. The duration of sub-arcsecond seeing was three to four hours on each day. Study of the white-light and magnetogram data yields the following results:
  1. For all but one of the sunspots we have observed, both dark fibrils and bright grains in the inner part of the penumbra of sunspots move toward the umbra with a speed of about 0.5 km s-1. In the outer part of the penumbra, movement is away from the umbra. The one exception is a newly formed spot, which has inflow only in its penumbra.
  2. Granular flows converge toward almost every pore, even before its formation. Pores are observed to form by the concentration of magnetic flux already existing in the photosphere. The pores (or small sunspots), in turn, then move and concentrate to form bigger sunspot.
  3. We followed an emerging flux region (EFR) from 29 to 31 July, 1989 that was composed of a large number of bipoles with magnetic polarities mixed over a large area in the first day of its birth. As time went on, polarities sorted out: the leading polarity elements moved in one direction; the following, the opposite. During the process a large number of cancellations occurred, with some sub-flares and surges observed simultaneously. After about 24 hours, the positive and negative fluxes were essentially separated.
  4. We find two kinds of photospheric dark alignments in the region of new flux emergence: (a) alignments connecting two poles of opposite magnetic polarity form the tops of rising flux tubes; (b) alignments corresponding to the magnetic flux of one polarity, which we call elongated pores.
  相似文献   

6.
Sunspots are the most conspicuous aspects of the Sun. They have a lower temperature, as compared to the surrounding photosphere; hence, sunspots appear as dark regions on a brighter background. Sunspots cyclically appear and disappear with a 11-year periodicity and are associated with a strong magnetic field ( ~103 G) structure. Sunspots consist of a dark umbra, surrounded by a lighter penumbra. Study of umbra–penumbra area ratio can be used to give a rough idea as to how the convective energy of the Sun is transported from the interior, as the sunspot’s thermal structure is related to this convective medium.An algorithm to extract sunspots from the white-light solar images obtained from the Kodaikanal Observatory is proposed. This algorithm computes the radius and center of the solar disk uniquely and removes the limb darkening from the image. It also separates the umbra and computes the position as well as the area of the sunspots. The estimated results are compared with the Debrecen photoheliographic results. It is shown that both area and position measurements are in quite good agreement.  相似文献   

7.
Pettauer  T.  Brandt  P. N. 《Solar physics》1997,175(1):197-203
Two novel methods of measuring umbral and penumbral areas of sunspots and of complex sunspot groups are described. Both methods comprise the digitization of photoheliograms by a frame grabber and the computation of intensity histograms of selected areas of activity. The first method, called cumulative histogram method, in principle determines the intensity boundaries umbra–penumbra and penumbra–photosphere from the intersections of linear fits into the corresponding parts of the cumulative histograms of sunspots. The second method, called maximum gradient method, marks image pixels of a given intensity level ±2 units wide as a white isophote on a display. Interactive variation of this level makes it easy to visually select the contour line fitting the boundary penumbra–photosphere (or umbra–penumbra) best. At the same level usually the width of the contour line is smallest. In both cases the summation of the pixel numbers above the corresponding intensity levels yields the umbral and the total sunspot areas, respectively. Some limitations of the two methods are discussed.  相似文献   

8.
Using a differential method we have carried out observations of oscillations in six sunspots. Spectral lines Fe i 5434 Å and Fe i 5576 Å were used. Horizontal waves are not observed in the sunspot umbra photosphere. Results obtained indicate that, at least, the sunspot umbra oscillates as a single whole.  相似文献   

9.
From a high-resolution spectrum of a sunspot umbra (1.1 < < 2.3 m) we derive models of the temperature stratification in the deep layers of the umbra. The observed spectrum is corrected for straylight using the Hi Paschen line at gl = 1.282 m. A method is described for the iterative fitting of empirical temperature models to spectral information, and the method is applied to the present data. We find that the observed profiles of 3 high-excitation lines of Sii and the observed continuum contrast between umbra and photosphere cannot be reproduced with a single one-component model of the umbral atmosphere: the Si i lines require a model that is 460 K hotter at gt 0.5 = 3 than the continuum model. This indicates that hot and cool components coexist within the umbra. A temperature model derived from the relative intensity in the wings of 3 low-excitation lines of Mgi, Ali, and Sii is not significantly different from the continuum model.Based on observations obtained at Kitt Peak National Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under contract with the National Science Foundation.  相似文献   

10.
Complete photoelectric spectra of the photosphere as well as of both umbra and penumbra of a typical sunspot, ranging from 3900–8000 Å, have been obtained at the Locarno observatory. An automatic scanning device, a high precision electronic divider and an on-line Oscillomink penless recorder enabled us to eliminate the noise produced by image distortion and to scan the entire visible spectrum within just 5 h. The recordings have a linear dispersion of about 50 mm/Å and a spectral resolution of 40 mÅ or better. Simultaneously with these observations the momentary continuous spot intensity and its fast variation with time due to seeing variations have been recorded with a frequency resolution up to 100 Hz. In order to provide as much data as possible for the correction of the umbral spectrum for parasitic light, we also measured the limb profile and the aureola intensity at several wavelengths.At present, the recordings are being processed and combined into an atlas, which we plan to make available in either numerical or graphical form.As a first result, we compare our corrected continuous sunspot intensities with those of other authors and derive standard reference data on the radiation of both umbra and penumbra of a typical sunspot. Finally we make a comparison between some radiative properties of sunspots and late-type stellar atmospheres.  相似文献   

11.
P. Maltby 《Solar physics》1970,13(2):312-318
Spectral observations of large sunspots during the period June 1968 – Dec. 1969 in five wavelength regions between 4795 and 6775 are discussed. Selecting the best observations of two very large sunspots, we find slightly lower umbral intensities than derived by earlier observers. It is suggested that the small difference may be explained by the fact that earlier observers have used an average value, whereas we believe that the minimum value gives a more correct estimate of the umbral intensity.  相似文献   

12.
Recently E. H. Schroeter showed that the electrical conductivity of the sunspot umbra, at least in the upper photospheric layers, is about ten-thousand times less than the value used by Cowling. This result implies that electrical conductivity gradients near sunspots may be relatively large. Upon taking such gradients into consideration, we find that the photosphere is current free and that current rings might encircle the sunspot, under suitable conditions, both in the lower photosphere and in the chromosphere. Plasma motions are neglected in the calculation.  相似文献   

13.
We study the spatial properties of solar magnetic fields using data from the Solar Vector Magnetograph of the Marshall Space Flight Center (MSFC) (FeI 5250.2 Å) and SOHO/MDI longitudinal magnetic field measurements (Ni 6767.8 Å) (96-min full-disk maps). Our study is focused on two objects: the fractal properties of sunspots and the fractal properties of the spatial magnetic field distribution of active and quiet regions considered as global structures. To study the spatial structure of sunspots, we use a well-known method of determining the fractal dimension based on an analysis of the perimeter—area relation. To analyze the fractal properties of the spatial magnetic field distribution over the solar surface, we use a technique developed by Higuchi. We have revealed the existence of three families of self-similar contours corresponding to the sunspot umbra, penumbra, and adjacent photosphere. The fractal coefficient has maxima near the umbra—penumbra and penumbra—photosphere boundaries. The fractal dependences of the longitudinal and transverse magnetic field distributions are similar, but the fractal numbers themselves for the transverse fields are larger than those for the longitudinal fields approximately by a factor of 1.5. The fractal numbers decrease with increasing mean magnetic field strength, implying that the magnetic field distribution is more regular in active regions.  相似文献   

14.
Visual impressions and a photograph of an intense white light flare are presented. A densitometer trace across the 4 July 1974 flare showing relative intensity of the white light flare, photosphere and umbra is also shown. A second white light flare is suspected on a photograph taken 43/4 hrs later. Both flares coincide in time with major H-flare activity.  相似文献   

15.
We have studied running penumbral waves, umbral oscillations, umbral flashes and their interrelations from H observations of a large isolated sunspot. Using a subtraction image processing technique we removed the sharp intensity gradient between the umbra and the penumbra and enhanced the low contrast, fine features. We observed running penumbral waves which started in umbral elements with a size of a few arcseconds, covered the umbra and subsequently propagated through the penumbra. The period of the waves was 190 s and the mean propagation velocity was about 15 km s–1. We detected intense brightenings, located between umbral elements from where waves started, which had the characteristics of umbral flashes. There are indications that umbral flashes are related to the propagation of the waves through the umbra and their coupling. The subtraction images also show considerable fine structure in the chromospheric umbra, with size between 0.3 and 0.8.  相似文献   

16.
Sometimes the component of a normal triplet in the umbra of sunspots, observed with a quarter plate analyser, seems to be analysed. We explain this effect as a saturation effect.  相似文献   

17.
Spatial scans with a resolution of 3.4 arc sec of the broad-band circular polarization of several sunspots have been made in five filter bands over the wavelength range 0.4–1.7µ with a sensitivity of 1 × 10–6 fractional polarization. The scans, across a spot through the penumbra and umbra center, revealed two important features: (1) The broad-band circularly polarized fluxV reverses in sign, or diminishes to near zero, at the center of the umbral region relative to the outer penumbra. This effect was wavelength dependent and was most clearly detected as a definite reversal in a band at 1.2µ, although a reversal was also detected in a very broad band extending from 0.8 to 1.6µ. (2) There is a marked asymmetry: in all cases the limbward penumbral region exhibited strongerV values than did the disk-center (inward) side of the spot, at all observed wavelengths. Such previously unreported structure in the magnetic circular polarization of sunspots provides new clues for understanding the anomalous large broad-band polarization at short wavelengths and at the same time imposes new constraints on sunspot models. For example, the polarization reversal in the umbra relative to the penumbra can be naively explained by return-flux sunspot models; but this is not the only interpretation. Alternatively, it can relate to reversals in mass-flow velocities and/or vertical velocity gradients, as between the umbra and penumbra.  相似文献   

18.
Using 2 pinhole photometers the intensity of the undisturbed photosphere was recorded simultaneously in 6 and in 4 wavelength regions. The rms value of the intensity variation in each of the 10 wavelength regions decreases slightly with increasing value of the heliocentric angle; this result confirms recent observations by other authors and supports the critique of the results given by Edmonds (1964).We report the detection of a secondary maximum in the wavelength dependence of the intensity variation at 1.5 m.  相似文献   

19.
We present Stokes I Zeeman splitting measurements of sunspots using the highly sensitive (g = 3) Fe i line at = 1.5649 m. The splittings are compared with simultaneous intensity measurements in the adjacent continuum. The relation between magnetic field strength and temperature has a characteristic, nonlinear shape in all the spots studied. In the umbra, there is an approximately linear relation between B 2 and T b, consistent with magnetohydrostatic equilibrium in a nearly vertical field. A distinct flattening of the B 2 vs T brelationship in the inner penumbra may be due to changes in the lateral pressure balance as the magnetic field becomes more horizontal; spatially unresolved intensity inhomogeneities may also influence the observed relation.Operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.  相似文献   

20.
We study the effects of two-dimensional turbulence generated in sunspot umbra due to strong magnetic fields and Alfven oscillations excited in sunspots due to relatively weak magnetic fields on the evolution of sunspots. Two phases of sunspot magnetic field decaying are shown to exist. The initial rapid phase of magnetic field dissipation is due to two-dimensional turbulence. The subsequent slow phase of magnetic field decaying is associated with Alfven oscillations. Our results correspond to observed data that provide evidence for two types of sunspot evolution. The effect of macroscopic diamagnetic expulsion of magnetic field from the convective zone or photosphere toward sunspots is essential in supporting the long-term stability and equilibrium of vertical magnetic flux tubes in sunspots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号