首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earthquakes are one of the most destructive and harmful natural disasters, especially in recent years, the 2008/5/12 Wenchuan M7.9 earthquake, the 2011/3/11 Tohoku M9.0 earthquake and the 2012/4/11 Sumatra M8.6 earthquake have caused a significant impact to the human life. In this paper, we make a study of the temporal and spatial distribution of the Global Positioning System Total Electron Content (GPS TEC) anomalies prior to the three strong earthquakes by the method of statistical analysis. Our results show that the pre-earthquake ionospheric anomalies are mainly positive anomalies and take the shape of a double-crest structure with a trough near the epicenter. The ionospheric anomalies do not coincide with the vertical projection of the epicenter of the subsequent earthquake, but mainly localize in the near-epicenter region and corresponding ionospheric anomalies are also simultaneously observed in the magnetic conjugate region prior to the three earthquakes. In addition, the amplitude and scale-size of the ionospheric ΔTEC are different with the magnitude of the earthquake, and the horizontal scale-size of the greatest anomalies before the Tohoku M9.0 earthquake is ~30° in longitude and ~10° in latitude, with the maximum amplitude of TEC disturbances reaching ~20 TECu relative to the background. The peak of anomaly enhancement usually occurs in the afternoon to sunset (i.e. between 14:00 and 18:00 local time) which lasts for approximate 2 hours. Possible causes of these anomalies are discussed, and after eliminating the effect of solar activities and magnetic storms it can be concluded that the detected obvious and regular anomalous behavior in TEC within just a few days before the earthquakes is related with the forthcoming earthquakes with high probability.  相似文献   

2.
In this paper, we conduct a new statistical study on the temporal distribution of the Global Positioning System Total Electron Content (GPS TEC) anomalies prior to the earthquakes with magnitude M≥7.0 in the global area during 2003–2012 by the method of statistical analysis. The temporal distribution of the ionospheric TEC anomalies prior to the earthquakes with magnitude M≥7.0 is for the first time studied. It has been observed that the ionospheric negative anomalies mainly occur in one week prior to the earthquakes, and only when the magnitude is greater than or equal to 7.6, the ionospheric anomalies will have the greatest probability of occurrence in the afternoon to sunset (i.e. between 12:00 and 18:00 local time). They last for approximate 2 hr, but the chance of detecting the significant enhancement in the ionospheric TEC seems not to be a function of time and there is no clear tendency for positive anomalies. In addition, the relationship of the occurrence rate of pre-earthquake ionospheric anomalies and the magnitude of the earthquake is discussed, and it is found that the observed ionospheric TEC anomalies within several days before the earthquakes are highly likely to be related with the earthquakes because the occurrence rate of pre-earthquake ionospheric anomalies seems to increase slightly with the earthquake magnitude increasing.  相似文献   

3.
Singular Value Decomposition (SVD) model is implemented to recognize the Total Electron Content (TEC) time series of daily, temporal as well as seasonal characteristics throughout the 24th solar cycle period of the year 2015 in the study. The Vertical (vTEC) analysis has been carried out with Global Positioning System (GPS) data sets collected from five stations from India namely GNT, Guntur (16.44° N, 80.62° E), and IISC, Bangalore (12.97° N, 77.59° E), LCK2, Lucknow (26.76° N, 80.88° E), one station from Thailand namely AITB, Bangkok (14.07° N, 100.61° E), and one station from South Andaman Island namely PBR, Port Blair (11.43° N, 92.43° E), located in low latitude region. The first five singular value modes constitute about 98% of the total variance, which are linearly transformed from the observed TEC data sets. So it is viable to decrease the number of modeling parameters. The Fourier Series Analysis (FSA) is carried out to characterize the solar-cycle, annual and semi-annual dependences through modulating the first three singular values by the solar (F10.7) and geomagnetic (Ap) indices. The positive correlation coefficient (0.75) of daily averaged GPS–TEC with daily averaged F10.7 strongly supports the temporal variations of the ionospheric features depends on the solar activity. Further, the significance and reliability of the SVD model is evaluated by comparing it with GPS–TEC data and the standard global model (Standard Plasma-Spherical Ionospheric Model, SPIM and International Reference Ionosphere, IRI 2016).  相似文献   

4.
Nonlinear principal component analysis (NLPCA) is implemented to analyze the spatial pattern of total electron content (TEC) anomalies 3 hours after Japan’s Tohoku earthquake that occurred at 05:46:23 on 11 March, 2011 (UTC) (M w =9). A geomagnetic storm was in progress at the time of the earthquake. NLPCA and TEC data processing were conducted on the global ionospheric map (GIM) for the time between 08:30 to 09:30 UTC, about 3 hours after this devastating earthquake and ensuing tsunami. Analysis results show stark earthquake-associated TEC anomalies that are widespread, and appear to have been induced by two acoustic gravity waves due to strong shaking (vertical acoustic wave) and the generation of the tsunami (horizontal Rayleigh mode gravity wave). The TEC anomalies roughly fit the initial mainshock and movement of the tsunami. Observation of the earthquake-associated TEC anomalies does not appear to be affected by a contemporaneous geomagnetic storm.  相似文献   

5.
At 21:30 UT on 2004 December 27 an extremely strong gamma-ray burst swept across the earth and caused the part of the terrestrial upper atmosphere exposed to it to produce extra ionization. Sudden ionospheric disturbance (SID) events were simultaneously observed at many of the very low frequency (VLF) electric wave observing stations. Analyses of the X-ray data of the GOES satellite as well as the solar wind and interplanetary data of the ACE satellite with the relevant theories show that the observed SID event observed was indeed caused by GRB041227. We calculated the response of the total electron content (TEC) of the terrestrial ionosphere to this γ-ray burst using the observed data provided by the international GPS service network (IGS) and the data processing method of coherent summation. The result indicates that the GRB041227 produced by the SGR1806-20 had an evident effect on the terrestrial ionosphere: in the course of the burst the average ionospheric TEC increased, to a maximum size of about 0.04 TECU (1 TECU = 1016 el/m2), equivalent to a solar flare with importance of C or lower. The calculated result demonstrates once again that a remote celestial body can also affect the terrestrial space environment to some extent.  相似文献   

6.
利用GPS双频观测量可获取电离层总电子含量(Total Electron Content,TEC),以监测区域上空电离层的分布和变化特征,从而可以发现不同尺度的电离层异常。该文采用2004年上海地区GPS综合应用网(SCGAN)以及中国地壳运动监测网络(CMONC)的部分台站的观测,计算得到1年时间序列的TEC数据,来研究长三角地区上空的电离层TEC的变化与活动。应用这些数据,综合利用高斯权函数和滑动平均等几种数据处理方法,重点分析和讨论了长三角地区上空电离层的周日变化、周年变化和季节性变化特性,揭示了电离层冬季异常等现象。同时,通过对1年时间序列TEC进行谱分析,得到了其相应的变化周期。  相似文献   

7.
GPS监测电离层活动的方法和最新进展   总被引:13,自引:0,他引:13  
全球定位系统(GPS)可以快速、准确地提供电离层总电子含量(TEC)信息。简要介绍了GPS技术精确测量TEC、监测电离层的原理和方法,指出进行TEC绝对量估计时求解差分群延迟(DCB)的重要性,以及建立多层和实时电离层监测模型的必要性。分析了影响TEC估计的主要误差源,着重介绍了目前GPS监测电离层的最新成果和进展。  相似文献   

8.
利用国际GPS观测网(IGS)提供的多个台站的观测数据,分析了M级别以下的小、暗太阳耀斑对向阳面电离层TEC的影响.利用传统分析方法的结果表明,从单条视线(LOS)观测数据得到的电离层TEC及其时间变化率曲线来看,由于它们的波动水平和正常情况下的背景电离层变化相当,使此类小耀斑的信息完全淹没在背景噪声中,不能够显示和分辨出耀斑的发生.利用相干求和的数据处理方法,选用向阳面18个GPS台站的观测数据研究了一次C级SF耀斑引起的电离层TEC增加,结果发现,这种方法能有效地消除背景电离层变化噪声,电离层对耀斑的响应非常清楚和明显,这通常只能在X级别的大耀斑中看到.和GOES卫星X射线数据相比,电离层TEC变化的时间特征和耀斑爆发的开始、最大和结束时间均有很好的符合,其最大平均TEC增量在0.1TECU以下,和X级别的大耀斑相比有一个或多个量级上的差别.  相似文献   

9.
Abstract— Stepwise dissolution of bulk Orgueil reveals that all of the Cr in the whole rock is isotopically anomalous, with an anomaly pattern that is thus far unique. Most of the Cr (along with other major and minor cations) is dissolved by acetic and nitric acids; it is deficient in 54Cr by ~5 ?. Subsequent treatment with hydrochloric acid dissolves a small fraction of the Cr with positive 54Cr anomalies, up to ~210 ?. Mass balance indicates that whole rock Cr is isotopically normal within analytical uncertainties. The least extravagant interpretation of these results is that some mineral phase is enriched in a heavy-Cr nucleosynthetic component, while most of the Cr is a homogenized mixture of diverse nucleosynthetic components that would be normal except for lack of the postulated heavy Cr carrier. The carrier is likely, but not necessarily, presolar interstellar grains. Its identity is unknown and constrained only circumstantially: it must be relatively rich in Cr, it is substantially soluble in hydrochloric acid, and it is not magnetite or spinel/chromite. Scanning electron microscope (SEM) examination of Orgueil reveals candidate Cr-rich oxides, silicates, sulfides and phosphides, but none of these can be identified yet as the heavy Cr carrier. Whether presolar or not, the carrier is not chemically resistant and likely not thermally refractory, thereby differing from most other phases known to host isotopic anomalies. Its survival (or production) thus establishes constraints on a different regime of nebular history.  相似文献   

10.
GPS实时监测和预报电离层电子含量   总被引:7,自引:2,他引:5  
GPS能高精度地实时监测电离层总电子含量(TEC)变化,对纠正单频GPS接收机电离层延迟和监测电离层活动及其所反映的太阳活动规律具有重要意义.上海地区GPS综合应用网的建立,为监测长江三角洲地区电离层变化提供了宝贵的资料,利用这些双频GPS接收机的连续观测资料,可近实时地监测和预报该地区电离层总电子含量,其内外符精度和外推预报30分钟的精度均优于0.4m.  相似文献   

11.
利用时间序列模型预报电离层TEC   总被引:6,自引:0,他引:6  
以IGS(international GPS service)发布的电离层TEC(total electron content)资料为样本,用时间序列模型对全球的电离层总电子含量进行了预报.在时间序列预报模型中,不同的定阶方法导致不同的预报结果;实践证明本文使用的BIC定阶准则较好地实现了电离层总电子含量的预报.结果表明:对10 d左右的预报时间段,时间序列模型的TEC计算结果相对精度高,预报相对精度优于60%的网格点数在总网格点数中所占百分比可达90%以上.  相似文献   

12.
The paper is based on the ionospheric variations in terms of vertical total electron content (VTEC) for the low solar activity period from May 2007 to April 2009 based on the analysis of dual frequency signals from the Global Positioning System (GPS) satellites recorded at ground stations Varanasi (Geographic latitude 25°16′ N, Longitude 82°59′ E), situated near the equatorial ionization anomaly crest and other two International GNSS Service (IGS) stations Hyderabad (Geographic latitude 17°20′ N, longitude 78°30′ E) and Bangalore (Geographic latitude 12°58′ N, longitude 77°33′ E) in India. We describe the diurnal and seasonal variations of total electron content (TEC), and the effects of a space weather related event i.e. a geomagnetic storm on TEC. The mean diurnal variation during different seasons is brought out. It is found that TEC at all the three stations is maximum during equinoctial months (March, April, September and October), and minimum during the winter months (November, December, January and February), while obtaining intermediate values during summer months (May, June, July and August). TEC shows a semi-annual variation. TEC variation during geomagnetic quiet as well as disturbed days of each month and hence for each season from May 2007 to April 2008 at Varanasi is examined and is found to be more during disturbed period compared to that in the quiet period. Monthly, seasonal and annual variability of GPS-TEC has been compared with those derived from International Reference Ionosphere (IRI)-2007 with three different options of topside electron density, NeQuick, IRI01-corr and IRI 2001. A good agreement is found between the GPS-TEC and IRI model TEC at all the three stations.  相似文献   

13.
We describe a method for removing ionospheric effects from single-frequency radio data a posteriori. This method is based on a theoretical climatological model developed by the USAF, which returns along the line of sight to the source. Together with a model of , ionospheric delay and Faraday rotation values ensue. If contemporaneous ionospheric data – GPS TEC observations or ionosonde profiles – exist, they can be incorporated to update the modeled ne.  相似文献   

14.
The present paper analyzes the dual frequency signals from GPS satellites recorded at Varanasi (Geographic latitude 25°, 16′ N, longitude 82°, 59′ E) near the equatorial ionization anomaly (EIA) crest in India, to study the effect of geomagnetic storm on the variation of TEC, during the low solar active period of May 2007 to April 2008. Three most intense—but still moderate class—storms having a rapid decrease of Dst-index observed during the GPS recorded data have been analyzed, which occurred on 20 November 2007, 9 March 2008 and 11 October 2008 were selected and storm induced features in the vertical TEC (VTEC) have been studied considering the mean VTEC value of quiet days as reference level. The possible reasons for storm time effects on VTEC have been discussed in terms of local time dependence, storm wind effect as well as dawn-dusk component of interplanetary electric field (IEF) Ey intensity dependence.  相似文献   

15.
GPS共视时间比对中的电离层时延改正问题   总被引:3,自引:2,他引:1  
众所周知,GPS共视是目前国际上主要的时间传递比对技术,其中扣除电离层时延是很重要的一个方面。介绍了如何采用国际GPS服务中心(IGS-International GPS Service)公布的电离总电子含量(TEC-Total Electron Content)图来进行电离层时延改正。结果表明:对于单频GPS接收机,采用TEC图作电离层时延改正后的单站定时和共视比对精度比用理论模型作改正的精度有很大的提高。通过比较还表明,亚太地区的时间实验室之室的时间传递精度比欧美地区的要低,这可能是因为亚太地区用于测量TEC的IGS测站少,因而导致该地区的TEC的精度较低。  相似文献   

16.
为了更好地计算GPS CV(共视)时间传递中的电离层时延值(它是影响CPS CV比对结果精度的主要因素之一),介绍了当前3种电离层时延的计算方法,并以NICT(National Institute of Information and Communications Technology)单站GPS比对数据及NICT与NTSC(National Time Service Center)的GPS共视比对数据为例,分析比较了不同的电离层时延计算方法对GPS时间比对结果精度的影响。计算结果表明:利用双频实测电离层时延和利用ICS(International GPS Service)提供的TEC(total electton content)map计算的电离层时延对GPS CV比对结果修正后的精度,比利用电离层改正模型的时延对比对结果修正后的精度分别提高30%~40%和20%~30%。  相似文献   

17.
The purpose of this work is to investigate the effect of magnetic activity on ionospheric time delay at low latitude Station Bhopal (geom. lat. 23.2°N, geom. long. 77.6°E) using dual frequency (1575.42 and 1227.60 MHz) GPS measurements. Data from GSV4004A GPS Ionospheric Scintillation and TEC monitor (GISTM) have been chosen to study these effects. This paper presents the results of ionospheric time delay during quiet and disturbed days for the year 2005. Results show that maximum delay is observed during quiet days in equinoxial month while the delays of disturbed period are observed during the months of winter. We also study the ionospheric time delay during magnetic storm conditions for the same period. Results do not show any clear relationship either with the magnitude of the geomagnetic storm or with the main phase onset (MPO) of the storm. But most of the maximum ionospheric time delay variations are observed before the main phase onset (MPO) or sudden storm commencement (SSC) as compared to storm days.  相似文献   

18.
C.S. Wright  G.J. Nelson 《Icarus》1979,38(1):123-135
Eighty MHz observations of the occultation of the radio source Culgoora-1 0300 + 16 by the plasma tail of Comet Kohoutek (1973f) were made in February/March 1974 with the Culgoora radioheliograph. No detectable source broadening or change in flux density was observed, but the results showed a 2' arc anomaly in the observed position. This is greater than can be attributed to ionospheric refraction or experimental error. We suggest that it arose from refraction in the plasma tail of the comet. Similar observations of the occulation of the radio source Culgoora-1 2313-14 by the plasma tail of Comet West (1975n) were made at Culgoora in February 1976. These results were inconclusive but did suggest that the cometary plasma may have had some influence on the observed source position. The results are used to derive, from simple models, the distribution of electron density in comet tails. Peak electron densities of approximately 2 to 5 × 104 cm?3 and density gradients of ~0.05 cm?3 km?1 are indicated.  相似文献   

19.
20.
The power spectrum density (PSD) of magnetic field in the ELF/VLF band recorded by the experiment IMSC onboard the DEMETER satellite were used to study the Ms7.1 Yushu earthquake taking place on April 13, 2010 in China. The results indicate that possible ionospheric electromagnetic perturbations occurring 4?days before the earthquake in the frequency range [370–897?Hz]. Along the orbit 30880_up, which passed over the epicenter area on 9 April, enhanced PSD value of magnetic field at 410?Hz was detected both over the epicentral area and its conjugate point in the southern hemisphere. While on revisited orbits during other days (before and after the earthquake) the magnetic field spectra remained at a relatively low level. In order to be sure that the electromagnetic disturbances were induced by this Yushu earthquake, relative variations of the magnetic field in the ELF/VLF range [370–897?Hz] were calculated and compared with the normal background during 3?years (2007, 2008 and 2009) in the time interval from Jan. 1st to Apr. 30 and in the area [23°N–43°N, 86°E–106°E]. The results show that the normal level of magnetic field in this area is relatively low (~10?7?nT2/Hz), but a large increase occurred from Apr. 1st to Apr. 14 which exceeds 5σb. After the earthquake, the magnetic field in the ELF/VLF range gradually decreased. In order to exclude the influence of geomagnetic field activity, we selected only the data recorded during magnetically quiet local night-times. In addition, artificial noises were also removed from the dataset used in the present paper. Therefore the observed perturbations were independent of geomagnetic field disturbances, and might be attributed to seismic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号