首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 89 毫秒
1.
仙女座星系(又称M31)是研究旋涡星系形成和演化的理想实验室。与银河系结构类似,M31包含以下几个基本成分:核、核球、盘和晕等。介绍了对M31各个结构在观测和理论研究方面的最新研究成果:简要回顾了自哈勃空间望远镜升空以来对M31核中结构的观测进展;介绍了核球的两种可能形成机制,并通过观测数据与模型结果的对比,发现M31核球可能同时包含一个经典核球和一个中心类似盒棒的赝核球;总结了盘的星族成分和星际介质的最新观测结果,并据此分别推导出了M31盘上的元素丰度梯度和恒星形成率等。最后,重点总结了晕的可能形成历史,以及球状星团的分布和特征等方面的研究进展。与银河系类似,M31也可能存在内晕和外晕的双结构特征,这表明M31晕与银河系可能有相似的形成历史。此外,通过对晕中潮汐星流的细致研究发现,M31可能有一个比银河系更加复杂的吸积历史。  相似文献   

2.
仙女星系(M31)是距离地球最近的大型旋涡星系,与银河系结构相似且质量相当,对M31天体的光谱观测与研究有助于理解银河系以及一般星系的形成与演化历史。整理了自20世纪以来天文学家对M31中天体的相关光谱观测与研究成果,共涉及了M31中5 000余个发射线天体、2 000余个星团、6 000余颗恒星、1 000余颗新星以及核球和盘上的星族的光谱。恒星光谱观测由早期的以超巨星为主发展到近20年更大样本以及更多类型,其中红巨星被用于研究M31星系盘和晕的性质及子结构。发射线天体通常被应用于M31质量测定、运动学分析和恒星演化的研究。M31星团的研究集中于金属丰度和运动学性质,以及利用视向速度测定M31位力质量。对M31中心星族的研究主要集中于核区的星族组成和运动学分析,其中运动学研究结果更支持核区的偏心盘模型。最后,介绍了郭守敬望远镜对M31天体的光谱观测与相关科学研究。  相似文献   

3.
尹君 《天文学报》2011,52(3):260-262
银河系、M31和M33是本星系群仅有的3个旋涡星系.M31和银河系有类似的质量、光度和形态,而M33的重子物质质量仅约为银河系的1/10.从理论上对它们进行细致的比较研究,非常有利于进一步理解旋涡星系以及本星系群的形成和演化过程.本文以银河系化学演化模型为参照,通过建立非瞬时循环假设下的唯象内落模型,详细研究了这3个旋涡星系的恒星形成和化学演化历史.首先,我们把在银河系研究中十分成功的化学演化模型框架应用于M31盘的化学演化研究中,  相似文献   

4.
韩金林 《天文学进展》2001,19(2):201-204
脉冲星的偏振信息是理解脉冲星辐射区的重要手段,利用澳大利亚的64m射电望远镜进行大量的脉冲星观测,得到了一批脉冲星的偏振轮廓和偏振参数,编辑了几乎所有发表的脉冲星轮廓资料,系统总结了脉冲星圆偏辐射的规律,为理论上解释脉冲星辐射这一重要难题提供观测依据和物理限制,利用脉冲星作为探针,研究了银河系磁场结构和模型,确定了银河系BS磁场模型,发现了银河系上下反对称的环向磁场,并首次对星系尺度的发电机类型进行判别,证认出A0型发电机运行于银河系,发现了银晕中的垂直磁场和M31及银盘中的非常延展的磁场,探测到NGC2997星系中由内到外的旋涡磁场,并提出可能有两种发电机在这个星系的不同区域运行。  相似文献   

5.
本文是在银河系化学演化的基础上,利用银河系的三成分(threezone)(即晕、厚盘和薄盘)多相(multi-phase)(气体,分子云,大、小质量恒星以及剩余物质)的化学演化的理论模型,讨论了以下观测约束:1、质量面密度、恒星形成率,各分区质量比;2、场星的年龄-金属丰度关系;3、α元素化学演化;4、太阳附近G矮星金属丰度分布;5、三成分金属丰度特征量;6、超新星爆发率;7、内落速率。结果表明,三成分多分量模型能够较好地满足观测约束,比较真实地反映星系演化过程。可以用该模型计算元素的星系化学演化。  相似文献   

6.
仙女座星系又称M31,是本星系群中最大的旋涡星系,它距离我们银河系约770 kpc。M31的累积视星等为3.44 mag,M31中的恒星数量大约为1012个。简要回顾了对M31当中恒星观测的发展历程,介绍了M31本地观测坐标系的建立和M31成员星的证认方法;总结了近年来在M31恒星观测上的进展并分析了其中的一些成果;最后讨论了未来的可行科学目标和LAMOST巡天计划在M31恒星观测方面可以做的工作。  相似文献   

7.
本文是在银河系化学演化的基础上,利用银河系的三成分(threezone)(即晕、厚盘和薄盘)多相(multi phase)(气体,分子云,大、小质量恒星以及剩余物质)的化学演化的理论模型,讨论了以下观测约束:1、质量面密度、恒星形成率,各分区质量比;2、场星的年龄-金属丰度关系;3、α元素化学演化;4、太阳附近G矮星金属丰度分布;5、三成分金属丰度特征量;6、超新星爆发率;7、内落速率。结果表明,三成分多分量模型能够较好地满足观测约束,比较真实地反映星系演化过程。可以用该模型计算元素的星系化学演化。  相似文献   

8.
束成钢 《天文学进展》2001,19(2):249-249
从星系形成和演化的角度出发,对星系结构和动力学进行的粗略的评述,内容包括:(1)初步描述了星系中各主要成分的物理特征(空间分布,运行学和化学)及其形成和演化,(2)Damped Lyman-alpha systems(DLAs)是本地星系的化石,对其进行观测研究是HST的主要任务之一,对DLAs宽的谱线轮廓的物理机制和其恒星形成,化学演化进行了讨论,(3)目前已证明Lyman Break方法是发现高红移高恒星形成星系的有效手段,讨论了Lyman Break Galaxies的动力学过程和恒星形象,(4)旋涡星系和椭圆星系的Scaling Law是星系形成和演化所必须解释的问题,对近期该方面的研究结果作了介绍,(5)整体超星的反馈作用在星系形成和演化中起了重要作用,评述了该物理过程对星系演化的影响;(6)随着观测资料的不断积累,各种物体对河外背景辐射的贡献已成了一个重要的研究方向,讨论了宇宙整体的星形成历史和化学演化,(7)银河系是进行星系形成和演化研究的归算零点,介绍了银河系的结构,动力学及演化。  相似文献   

9.
宇宙信息     
一个国际天文学家小组最近研究揭示了一个上千个太阳质量的黑洞在近距星暴星系M82内的形成过程。 钱德拉X射线天文台的观测表明位于星暴星系M82里的星团MGG11中存在一个异常的亮源。这个X射线源的特性只能由一个大约一千个太阳质量的黑洞来解释,这一黑洞的质量居银河系比较小的(恒星质量)黑洞和在星系核里发现的特大质量黑洞之间。恒星质量黑洞仅比太阳的质量大几倍,而银河系中心的黑洞比太阳的质量大几百万倍。  相似文献   

10.
M51系统包含巨旋涡星系M51和相对较大且较近的伴星系NGC 5195。M51离银河系较近,由尘埃消光带来的观测不确定性也就不十分显著,从而可以得到较详细的星系结构。自M51被发现至今,从射电波段到X射线波段都已获得了丰富的观测资料。主要介绍了M51的多波段观测成果和数值模拟研究,并概述了对其伴星系NGC 5195的观测。  相似文献   

11.
《New Astronomy》2002,7(4):161-169
In the usual and most widespread textbook picture of the Milky Way Galaxy, disk stars like the Sun are referred to as Population I, the spheroidal or halo component in turn as Population II. The latter is thought of as the pressure-supported, metal-poor relic of the early Galaxy, with renewed interest in recent years in the search for dark matter via microlensing. Modelling the putative massive compact halo objects however, faces the problem that the stellar halo is generally considered to consist of only a few billion solar masses. Here we present observational evidence that even this low budget may be a factor ten too high. If so, this immediately implies that the classical population II of halo stars is fairly irrelevant, not only in the dark matter context, but, in particular, in models of the formation and evolution of the Milky Way Galaxy.  相似文献   

12.
The chemical evolution history of a galaxy hides clues about how it formed and has been changing through time. We have studied the chemical evolution history of the Milky Way (MW) and Andromeda (M31) to find which are common features in the chemical evolution of disc galaxies as well as which are galaxy-dependent. We use a semi-analytic multizone chemical evolution model. Such models have succeeded in explaining the mean trends of the observed chemical properties in these two Local Group spiral galaxies with similar mass and morphology. Our results suggest that while the evolution of the MW and M31 shares general similarities, differences in the formation history are required to explain the observations in detail. In particular, we found that the observed higher metallicity in the M31 halo can be explained by either (i) a higher halo star formation efficiency (SFE), or (ii) a larger reservoir of infalling halo gas with a longer halo formation phase. These two different pictures would lead to (i) a higher [O/Fe] at low metallicities, or (ii) younger stellar populations in the M31 halo, respectively. Both pictures result in a more massive stellar halo in M31, which suggests a possible correlation between the halo metallicity and its stellar mass.  相似文献   

13.
LETTERS1 INTRODUCTIONIn the hierarchical scenario of structure formation, massive dark ha1os fOrm by gravitationalaggregation of individual low-mass objects, whi1e the stel1ar disks of spiral galaxies like theMilky Way form by accretion of gas which cools and falls onto the galaxies from an extendedsurrounding reservoir. FOr a massive galaxy of M ~ 10"MO, the surrounding gas can be heatedto temperature of T ~ 106 K by gravitational1y-driven shocks, the dominant cooling is thus dueto …  相似文献   

14.
A large number of early-type galaxies are now known to possess blue and red subpopulations of globular clusters. We have compiled a data base of 28 such galaxies exhibiting bimodal globular cluster colour distributions. After converting to a common V – I colour system, we investigate correlations between the mean colour of the blue and red subpopulations with galaxy velocity dispersion. We support previous claims that the mean colours of the blue globular clusters are unrelated to their host galaxy. They must have formed rather independently of the galaxy potential they now inhabit. The mean blue colour is similar to that for halo globular clusters in our Galaxy and M31. The red globular clusters, on the other hand, reveal a strong correlation with galaxy velocity dispersion. Furthermore, in well-studied galaxies the red subpopulation has similar, and possibly identical, colours to the galaxy halo stars. Our results indicate an intimate link between the red globular clusters and the host galaxy; they share a common formation history. A natural explanation for these trends would be the formation of the red globular clusters during galaxy collapse.  相似文献   

15.
We investigate the correlation of star formation quenching with internal galaxy properties and large-scale environment (halo mass) in empirical data and theoretical models. We make use of the halo-based group catalogue of Yang and collaborators, which is based on the Sloan Digital Sky Survey. Data from the Galaxy evolution explorer are also used to extract the recent star formation rate. In order to investigate the environmental effects, we examine the properties of 'central' and 'satellite' galaxies separately. For central galaxies, we are unable to conclude whether star formation quenching is primarily connected with halo mass or stellar mass, because these two quantities are themselves strongly correlated. For satellite galaxies, a nearly equally strong dependence on halo mass and stellar mass is seen. We make the same comparison for five different semi-analytic models based on three independently developed codes. We find that the models with active galactic nuclei feedback reproduce reasonably well the dependence of the fraction of central red and passive galaxies on halo mass and stellar mass. However, for satellite galaxies, the same models badly overproduce the fraction of red/passive galaxies and do not reproduce the empirical trends with stellar mass or halo mass. This satellite overquenching problem is caused by the too-rapid stripping of the satellites' hot gas haloes, which leads to rapid strangulation of star formation.  相似文献   

16.
We present an analysis of UBVRI data from the selected area SA 141. By applying recalibrated methods of measuring ultraviolet excess (UVX), we approximate abundances and absolute magnitudes for 368 stars over 1.3 deg2 out to distances over 10 kpc. With the density distribution constrained from our previous photometric parallax investigations and with sufficient accounting for the metallicity bias in the UVX method, we are able to compare the vertical abundance distribution to those measured in previous studies. We find that the abundance distribution has an underlying uniform component consistent with previous spectroscopic results that posit a monometallic thick disc and halo with abundances of  [Fe/H]=−0.8  and −1.4, respectively. However, there are a number of outlying data points that may indicate contamination by more metal-rich halo streams. The absence of vertical abundance gradients in the Galactic stellar populations and the possible presence of interloping halo streams would be consistent with expectations from merger models of Galaxy formation. We find that our UVX method has limited sensitivity in exploring the metallicity distribution of the distant Galactic halo, owing to the poor constraint on the UBV properties of very metal-poor stars. The derivation of metallicities from broad-band UBV photometry remains fundamentally sound for the exploration of the halo but is in need of both improved calibration and superior data.  相似文献   

17.
We develop a method to measure the probability, P ( N;   M ), of finding N galaxies in a dark matter halo of mass M from the theoretically determined clustering properties of dark matter haloes and the observationally measured clustering properties of galaxies. Knowledge of this function and the distribution of the dark matter completely specifies all clustering properties of galaxies on scales larger than the size of dark matter haloes. Furthermore, P ( N;   M ) provides strong constraints on models of galaxy formation, since it depends upon the merger history of dark matter haloes and the galaxy–galaxy merger rate within haloes. We show that measurements from a combination of the Two Micron All Sky Survey and Sloan Digital Sky Survey or Two-degree Field Galaxy Redshift Survey data sets will allow P ( N;   M ) averaged over haloes occupied by bright galaxies to be accurately measured for N =0–2 .  相似文献   

18.
《New Astronomy》2007,12(4):289-321
This paper has two parts: one about observational constraints, and the other about chemical evolution models. In the first part, the empirical differential metallicity distribution (EDMD) is deduced from two different samples involving (i) 268 K-giant bulge stars [Sadler, E.M., Rich, R.M., Terndrup, D.M., 1996. AJ 112, 171], and (ii) 149 globular clusters [Mackey, A.D., van den Bergh, S., 2005. MNRAS 360, 631], in addition to previous results (Caimmi, R., 2001b, AN 322, 241 (C01)) related to (iii) 372 solar neighbourhood halo subdwarfs [Ryan, S.G., Norris, J.E., 1991. AJ 101, 1865]. Under the assumption that each distribution is typical for the corresponding subsystem, the EDMD of the Galactic spheroid is determined by weighting the mass. The empirical age-metallicity relation (EAMR) involving absolute ages is deduced from recent results related to a homogeneous sample of globular clusters [De Angeli, F., Piotto, G., Cassisi, S., et al., 2005. AJ 130, 116]. In the second part, models of chemical evolution for the Galactic halo and bulge are computed, assuming the instantaneous recycling approximation. The EDMD data are fitted, to an acceptable extent, by simple models of chemical evolution implying both homogeneous and inhomogeneous star formation, provided that star formation is inhibited during halo formation and enhanced during bulge formation, with respect to the disk solar neighbourhood, taken to be representative of the whole disk. The initial mass function (IMF) is assumed to be a universal power law, which implies the same value of the true yield in different subsystems. The theoretical differential metallicity distribution (TDMD) is first determined for the halo and the bulge separately, and then for the Galactic spheroid by weighting the mass. The EAMR cannot be fitted into the Simple model that implies homogeneous star formation, but shows a non-monotonic trend characterized by large dispersion. On the other hand, simple models involving inhomogeneous star formation yield a theoretical age-metallicity relation (TAMR) which reproduces the data to an acceptable extent. For gas ouflow from the proto-halo, acceptable models give rise to different predictions in different alternatives. If the Galactic spheroid and disk underwent decoupled chemical evolution, i.e. no gas exchange between the related reservoirs, less than one third of the bulge mass outflowed from the proto-halo. If the Galactic spheroid and disk underwent coupled chemical evolution, i.e. some gas exchange between the related reservoirs, the existence of an unseen baryonic halo (or equivalent amount of gas lost by the Galaxy) with mass comparable to bulge mass, is necessarily needed. In this view, the outflowing proto-halo gas which remains bound to the Galaxy, produces both the bulge and the disk.  相似文献   

19.
According to the two-infall model for the chemical evolution of the Galaxy the halo and bulge formed on a relatively short timescale (0.8–1.0 Gyr) out of the first infall episode, whereas the disk accumulated much more slowly and ‘inside-out’ during a second independent infall episode. We explored the effects of a threshold in the star formation process, during both the halo and disk phases. In the comparison between model predictions and available data, we have focused our attention on abundance gradients as well as gas, stellar and star formation rate distributions along the disk. We suggest that the mechanism for the formation of the halo leaves detectable imprints on the chemical properties of the outer regions of the disk, whereas the evolution of the halo and the inner disk are almost completely disentangled. This is due to the fact that the halo and disk densities are comparable at large Galactocentric distances and therefore the gas lost from the halo can substantially contribute to building up the outer disk. We predict that the abundance gradients along the Galactic disk have increased in time during the first billion years of the disk evolution and remained almost constant in the last ~5Gyrs. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号