首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Magnetic clouds (MCs) are transient magnetic structures giving the strongest southward magnetic field (Bz south) in the solar wind. The sheath regions of MCs may also carry a southward magnetic field. The southward magnetic field is responsible for space-weather disturbances. We report a comprehensive analysis of MCs and Bz components in their sheath regions for 1995 to 2017. 85% of 303 MCs contain a south Bz up to 50 nT. Sheath Bz during the 23 years may reach as high as 40 nT. MCs of the strongest magnetic magnitude and Bz south occur in the declining phase of the solar cycle. Bipolar MCs depend on the solar cycle in their polarity, but not in the occurrence frequency. Unipolar MCs show solar-cycle dependence in their occurrence frequency, but not in their polarity. MCs with the highest speeds, the largest total-\(B\) magnitudes, and sheath Bz south originate from source regions closer to the solar disk center. About 80% of large Dst storms are caused by MC events. Combinations of a south Bz in the sheath and south-first MCs in close succession have caused the largest storms. The solar-cycle dependence of bipolar MCs is extended to 2017 and now spans 42 years. We find that the bipolar MC Bz polarity solar-cycle dependence is given by MCs that originated from quiescent filaments in decayed active regions and a group of weak MCs of unclear sources, while the polarity of bipolar MCs with active-region flares always has a mixed Bz polarity without solar-cycle dependence and is therefore the least predictable for Bz forecasting.  相似文献   

2.
We study the possibilities of the separation of solar electromagnetic and corpuscular impacts on the terrestrial lower atmosphere by examining their characteristic differences. We focus on the behaviour of the solar-meteorological correlation with respect to characteristic magnetic properties. Examples are given that the solar meteorological correlation - the efficiency of the solar impact - depends on the Sun-Earth attitude, the polarity of the solar main dipole field (and IMF) and the type of the geomagnetic events. This can explain the virtual disappearance or reversal of certain solar-meteorological effects.  相似文献   

3.
One of the fundamental questions in solar physics is how the solar corona maintains its high temperature of several million Kelvin above photosphere with a temperature of 6000 K. Observations show that solar coronal heating problem is highly complex with many different facts. It is likely that different heating mechanisms are at work in the solar corona. The separate kinds of coronal loops may also be heated by different mechanisms. Using data from instruments onboard the Solar and Heliospheric Observatory (SOHO) and from the more recent Transition Region and Coronal Explorer (TRACE) scientists have identified small regions of mixed polarity, termed magnetic carpet contributing to solar activity on a short time scale. Magnetic loops of all sizes rise into the solar corona, arising from regions of opposite magnetic polarity in the photosphere. Energy released when oppositely directed magnetic fields meet in the corona is one likely cause for coronal heating. There is enough energy coming up from the loops of the “magnetic carpet” to heat the corona to its known temperature.  相似文献   

4.
Varsik  J.R.  Wilson  P.R.  Li  Y. 《Solar physics》1999,184(2):223-237
We present high-resolution studies of the solar polar magnetic fields near sunspot maximum in 1989 and towards sunspot minimum in 1995. We show that, in 1989, the polar latitudes were covered by several unipolar regions of both polarities. In 1995, however, after the polar field reversal was complete, each pole exhibited only one dominant polarity region.Each unipolar region contains magnetic knots of both polarities but the number count of the knots of the dominant polarity exceeds that of the opposite polarity by a ratio of order 4:1, and it is rare to find opposite polarity pairs, i.e., magnetic bipoles.These knots have lifetimes greater than 7 hours but less than 24 hours. We interpret the longitudinal displacement of the knots over a 7-hour period as a measure of the local rotation rate. This rotation rate is found to be generally consistent with Snodgrass' (1983) magnetic rotation law.In an attempt to obtain some insight into the operation of the solar dynamo, sketches of postulated subsurface field configurations corresponding to the observed surface fields at these two epochs of the solar cycle are presented.  相似文献   

5.
Coronal holes and interplanetary disturbances are important aspects of the physics of the Sun and heliosphere. Interplanetary disturbances are identified as an increase in the density turbulence compared with the ambient solar wind. Erupting stream disturbances are transient large-scale structures of enhanced density turbulence in the interplanetary medium driven by the high-speed flows of low-density plasma trailing behind for several days. Here, an attempt has been made to investigate the solar cause of erupting stream disturbances, mapped by Hewish & Bravo (1986) from interplanetary scintillation (IPS) measurements made between August 1978 and August 1979 at 81.5 MHz. The position of the sources of 68 erupting stream disturbances on the solar disk has been compared with the locations of newborn coronal holes and/or the areas that have been coronal holes previously. It is found that the occurrence of erupting stream disturbances is linked to the emergence of new coronal holes at the eruption site on the solar disk. A coronal hole is indicative of a radial magnetic field of a predominant magnetic polarity. The newborn coronal hole emerges on the Sun, owing to the changes in magnetic field configuration leading to the opening of closed magnetic structure into the corona. The fundamental activity for the onset of an erupting stream seems to be a transient opening of pre-existing closed magnetic structures into a new coronal hole, which can support highspeed flow trailing behind the compression zone of the erupting stream for several days.  相似文献   

6.
H. Lin  J. Varsik  H. Zirin 《Solar physics》1994,155(2):243-256
High-resolution magnetograms of the solar polar region were used for the study of the polar magnetic field. In contrast to low-resolution magnetograph observations which measure the polar magnetic field averaged over a large area, we focused our efforts on the properties of the small magnetic elements in the polar region. Evolution of the filling factor - the ratio of the area occupied by the magnetic elements to the total area - of these magnetic elements, as well as the average magnetic field strength, were studied during the maximum and declining phase of solar cycle 22, from early 1991 to mid-1993.We found that during the sunspot maximum period, the polar regions were occupied by about equal numbers of positive and negative magnetic elements, with equal average field strength. As the solar cycle progresses toward sunspot minimum, the magnetic field elements in the polar region become predominantly of one polarity. The average magnetic field of the dominant polarity elements also increases with the filling factor. In the meanwhile, both the filling factor and the average field strength of the non-dominant polarity elements decrease. The combined effects of the changing filling factors and average field strength produce the observed evolution of the integrated polar flux over the solar cycle.We compared the evolutionary histories of both filling factor and average field strength, for regions of high (70°–80°) and low (60°–70°) latitudes. For the south pole, we found no significant evidence of difference in the time of reversal. However, the low-latitude region of the north pole did reverse polarity much earlier than the high-latitude region. It later showed an oscillatory behavior. We suggest this may be caused by the poleward migration of flux from a large active region in 1989 with highly imbalanced flux.  相似文献   

7.
Ifedili  S. O. 《Solar physics》1998,180(1-2):487-493
Using the cosmic-ray intensity data recorded with ground-based monitors at Mt. Washington and Deep River, and with cosmic-ray telescopes on Pioneer 8 and 9 spacecraft as well as the 2-hour averages of the IMF (magnitude and direction) and the solar wind bulk speed and density at 1 AU, the cosmic-ray decreases and interplanetary disturbances, that occurred during the period of solar magnetic polarity reversal in solar cycle 20, were investigated.We observed a two-step Forbush decrease on 22–23 November 1969, and a Forbush decrease on 26 November 1969, which are respectively consistent with the model of Barnden (1973), and of Parker (1963) and Barnden (1973). Only one Forbush decrease event was observed in December 1969, a period during which there was a solar magnetic polarity reversal; the Forbush decrease was attributed to a long-lived corotating high-speed solar wind stream. This is indicative that at heliolongitudes from 43° E to 70° W of S–E radial, covered by the observations, the solar magnetic polarity reversal in solar cycle 20 was not carried by, nor related to, individual transient structures, and that the reversal most probably evolved gradually.  相似文献   

8.
Active regions     
H. Zirin 《Solar physics》1970,14(2):328-341
A summary of data on the occurrence of flares and the development of active regions, based on cinematographic data is given. It is shown that flare frequency is determined by the orientation of the magnetic axis relative to the direction of solar rotation and the morphology of the magnetic field as seen in H. In particular, flares are most numerous in simple round spots with reversed polarity nearby, although they may also be frequent in complex spots with polarity reversal.Important solar active regions are shown to evolve principally along two lines; typically they appear as bright regions with loops and grow rapidly to stable bipolar magnetic form. Important activity will occur as the result of later growth of following polarity ahead of the main spots, or some other source of reversal. However, some groups appear as reversed polarity regions and grow rapidly to a level of extreme activity.A series of papers giving case histories is promised.  相似文献   

9.
We examine a non-linear mechanism for a solar surge in which plasma regions of high electrical conductivity and macroscopic dimension can be rapidly accelerated without diffusion of magnetic field. The mechanism is suggested by Rust's observations, which show that surges occur near sunspots in regions of reversed magnetic polarity. For the purposes of numerical calculation, we replace the magnetic field near a polarity reversal in a sunspot by magnetic fields of current loops. The relaxation of the magnetic field generated by two antiparallel coaxial current loops in an incompressible plasma is traced by computer. The results suggest that plasma in the form of a vortex ring can be expelled at the Alfvén velocity from active solar regions.  相似文献   

10.
Smith  C.W.  Ness  N.F.  Burlaga  L.F.  Skoug  R.M.  McComas  D.J.  Zurbuchen  T.H.  Gloeckler  G.  Haggerty  D.K.  Gold  R.E.  Desai  M.I.  Mason  G.M.  Mazur  J.E.  Dwyer  J.R.  Popecki  M.A.  Möbius  E.  Cohen  C.M.S.  Leske  R.A. 《Solar physics》2001,204(1-2):227-252
We present ACE observations for the six-day period encompassing the Bastille Day 2000 solar activity. A high level of transient activity at 1 AU, including ICME-driven shocks, magnetic clouds, shock-accelerated energetic particle populations, and solar energetic ions and electrons, are described. We present thermal ion composition signatures for ICMEs and magnetic clouds from which we derive electron temperatures at the source of the disturbances and we describe additional enhancements in some ion species that are clearly related to the transient source. We describe shock acceleration of 0.3–2.0 MeV nucl−1 protons and minor ions and the relative inability of some of the shocks to accelerate significant energetic ion populations near 1 AU. We report the characteristics of < 20 MeV nucl−1 solar energetic ions and < 0.32 MeV electrons and attempt to relate the release of energetic electrons to particular source regions.  相似文献   

11.
Previous studies of the source regions of solar wind sampled by ACE and Ulysses showed that some solar wind originates from open magnetic flux rooted in active regions. These solar wind sources were labeled active-region sources when the open flux was from a strong field region with no corresponding coronal hole in the NSO He 10830 Å synoptic coronal-hole maps. Here, we present a detailed investigation of several of these active-region sources using ACE and Ulysses solar wind data, potential field models of the corona, and solar imaging data. We find that the solar wind from these active-region sources has distinct signatures, e.g., it generally has a higher oxygen charge state than wind associated with helium-10830 Å coronal-hole sources, indicating a hotter source region, consistent with the active region source interpretation. We compare the magnetic topology of the open field lines of these active-region sources with images of the hot corona to search for corresponding features in EUV and soft X-ray images. In most, but not all, cases, a dark area is seen in the EUV and soft X-ray image as for familiar coronal-hole sources. However, in one case no dark area was evident in the soft X-ray images: the magnetic model showed a double dipole coronal structure consistent with the images, both indicating that the footpoints of the open field lines, rooted deep within the active region, lay near the separatrix between loops connecting to two different opposite polarity regions.  相似文献   

12.
Previous studies of the source regions of solar wind sampled by ACE and Ulysses showed that some solar wind originates from open magnetic flux rooted in active regions. These solar wind sources were labeled active-region sources when the open flux was from a strong field region with no corresponding coronal hole in the NSO He 10830 Å synoptic coronal-hole maps. Here, we present a detailed investigation of several of these active-region sources using ACE and Ulysses solar wind data, potential field models of the corona, and solar imaging data. We find that the solar wind from these active-region sources has distinct signatures, e.g., it generally has a higher oxygen charge state than wind associated with helium-10830 Å coronal-hole sources, indicating a hotter source region, consistent with the active region source interpretation. We compare the magnetic topology of the open field lines of these active-region sources with images of the hot corona to search for corresponding features in EUV and soft X-ray images. In most, but not all, cases, a dark area is seen in the EUV and soft X-ray image as for familiar coronal-hole sources. However, in one case no dark area was evident in the soft X-ray images: the magnetic model showed a double dipole coronal structure consistent with the images, both indicating that the footpoints of the open field lines, rooted deep within the active region, lay near the separatrix between loops connecting to two different opposite polarity regions.  相似文献   

13.
The 180-degree ambiguity in magnetic field direction along polarity reversal boundaries can be resolved often and reliably by the chiral method. The chiral method requires (1) identification of the chirality of at least one solar feature related to a polarity reversal boundary along which the field direction is sought and (2) knowledge of the polarity of the network magnetic field on at least one side of the polarity reversal boundary. In the context of the Sun, chirality is an observable signature of the handedness of the magnetic field of a solar feature. We concentrate on how to determine magnetic field direction from chirality definitions and illustrate the technique in eight examples. The examples cover the spectrum of polarity boundaries associated with filament channels and filaments ranging from those connected with active regions to those on the quiet Sun. The applicability of the chiral method to all categories of filaments supports the view that active region filaments and quiescent filaments are the extreme ends in a continuous spectrum of filaments. The chiral method is almost universally applicable because many types of solar features that reveal chirality are now readily seen in solar images accessible over the World Wide Web; also there are clear differences between left-handed and right-handed solar structures that can be identified in both high- and low-resolution data although high-resolution images are almost always preferable. In addition to filaments and filament channels, chirality is identifiable in coronal loop systems, flare loop systems, sigmoids, some sunspots, and some erupting prominences. Features other than filament channels and filaments can be used to resolve the 180-degree ambiguity because there is a one-to-one relationship between the chiralities of all features associated with a given polarity reversal boundary. Y. Lin is now at the Institute of Theoretical Astrophysics, University of Oslo.  相似文献   

14.
Galactic cosmic rays (GCRs) are modulated by the heliospheric magnetic field (HMF) both over decadal time scales (due to long-term, global HMF variations), and over time scales of a few hours (associated with solar wind structures such as coronal mass ejections or the heliospheric current sheet, HCS). Due to the close association between the HCS, the streamer belt, and the band of slow solar wind, HCS crossings are often associated with corotating interaction regions where fast solar wind catches up and compresses slow solar wind ahead of it. However, not all HCS crossings are associated with strong compressions. In this study we categorize HCS crossings in two ways: Firstly, using the change in magnetic polarity, as either away-to-toward (AT) or toward-to-away (TA) magnetic field directions relative to the Sun and, secondly, using the strength of the associated solar wind compression, determined from the observed plasma density enhancement. For each category, we use superposed epoch analyses to show differences in both solar wind parameters and GCR flux inferred from neutron monitors. For strong-compression HCS crossings, we observe a peak in neutron counts preceding the HCS crossing, followed by a large drop after the crossing, attributable to the so-called ‘snow-plough’ effect. For weak-compression HCS crossings, where magnetic field polarity effects are more readily observable, we instead observe that the neutron counts have a tendency to peak in the away magnetic field sector. By splitting the data by the dominant polarity at each solar polar region, we find that the increase in GCR flux prior to the HCS crossing is primarily from strong compressions in cycles with negative north polar fields due to GCR drift effects. Finally, we report on unexpected differences in GCR behavior between TA weak compressions during opposing polarity cycles.  相似文献   

15.
冕洞的研究在近二十多年里取得了丰硕的成果。本文回顾了冕洞的发现及观测历史,系统阐述了冕洞的结构特征、形成及演化规律,讨论了冕洞对日地空间产生的影响,冕洞与超级活动区的关系以及冕洞在太阳活动预报中所起的作用,在此基础上利用1970—1995年的冕洞资料对冕洞的时空分布和磁极性演化规律与太阳活动周的关系,以及冕洞与太阳风速度、地磁扰动等方面进行分析研究,得出以下结论:(1)冕洞在南北半球的分布在形态上基本是对称的,但在冕洞数量上北半球稍占优势;(2)冕洞的盛衰演化呈周期性,表现为赤道冕洞周期与黑子周期是完全一致的,极冕洞周期与黑子周期相位相差180°;(3)赤道冕洞的纬度分布随太阳活动周上升而上升,当太阳活动周达到极大值时,它也达到极大,然后再随太阳活动周下降而下降,极冕洞的纬度延伸方向演化与赤道冕洞相反;(4)极冕洞的极场呈11年周期性,并且极场反转出现在太阳活动峰年期间;(5)太阳风和地磁扰动与冕洞的演化有着密切的关系  相似文献   

16.
A simple model is used to present a unified picture of the polarity pattern of the interplanetary magnetic field observed during the solar cycle. Emphasis in this paper is on the field near solar maximum. The heliographic latitude dependence of the dominant polarity of the interplanetary magnetic field is explained in terms of weak poloidal (dipolar) field sources in the sun's photosphere. Unlike the Babcock theory, the author hypothesizes that the dipolar field exists at equatorial latitudes (0–20°), too, (as well as in polar regions) and that the major source of the interplanetary magnetic field observed near the ecliptic plane is the dipolar field from equatorial latitudes. The polarity of the interplanetary field data taken in 1968 and in the first half of 1969 near solar maximum may possibly be explained in terms of a depression of the dipolar field boundary in space. The effect on the solar wind of the greater activity in the northern hemisphere of the sun that existed in 1968 and in the first half of 1969 is believed responsible for this hypothesized depression, especially near solar maximum, of the plane separating the + and - dipolar polarity below the solar equatorial plane in space. Predictions are made concerning the interplanetary field to be observed near the ecliptic plane in each portion of the next solar cycle.  相似文献   

17.
This work aims at investigating unstable modes of oscillation of quasi-vertical two-dimensional current sheets with sheared magnetic fields under physical conditions typical for the solar corona. We use linear magnetohydrodynamic equations to obtain sets of unstable modes related to the longitudinal inhomogeneity of the current sheet. It is shown that these modes of current sheet oscillations can modulate the current sheet thickness along the polarity inversion line. Based on the obtained results, we propose a scenario which can naturally explain both the quasi-periodic pulsations of hard X-ray emission and the parallel movement of their double footpoint-like sources along the polarity inversion line observed in some eruptive two-ribbon solar flares.  相似文献   

18.
We discuss the study of solar magnetic fields based on the photospheric vector magnetograms of solar active regions which were obtained at Huairou Solar Observing Station near Beijing in the period of 22nd and 23th solar cycles. The measurements of the chromospheric magnetic field and the spatial configuration of the field at the lower solar atmosphere inferred by the distribution of the solar photospheric and chromospheric magnetic field. After the analysis on the formation process of delta configuration in some super active regions based on the photospheric vector magnetogram observations, some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, proposed to be generated in the subatmosphere, is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and the relationship with magnetic shear in some delta active regions completely. (3) The proposition is that the large-scale delta active regions are formed from contribution by highly sheared non-potential magnetic flux bundles generated in the subatmosphere. We present some results of a study of the magnetic helicity. We also compare these results with other data sets obtained by magnetographs (or Stokes polarimeters) at different observatories, and analyze the basic chirality of the magnetic field in the solar atmosphere.  相似文献   

19.
We analyze the electric fields that arise at the footpoints of a coronal magnetic loop from the interaction between a convective flow of partially ionized plasma and the magnetic field of the loop. Such a situation can take place when the loop footpoints are at the nodes of several supergranulation cells. In this case, the neutral component of the converging convective flows entrain electrons and ions in different ways, because these are magnetized differently. As a result, a charge-separating electric field emerges at the loop footpoints, which can efficiently accelerate particles inside the magnetic loop under appropriate conditions. We consider two acceleration regimes: impulsive (as applied to simple loop flares) and pulsating (as applied to solar and stellar radio pulsations). We have calculated the fluxes of accelerated electrons and their characteristic energies. We discuss the role of the return current when dense beams of accelerated particles are injected into the corona. The results obtained are considered in light of the currently available data on the corpuscular radiation from solar flares.  相似文献   

20.
The generation of magnetic flux in the solar interior and its transport from the convection zone into the photosphere, the chromosphere, and the corona will be in the focus of solar physics research for the next decades. With 4 m class telescopes, one plans to measure essential processes of radiative magneto‐hydrodynamics that are needed to understand the nature of solar magnetic fields. One key‐ingredient to understand the behavior of solar magnetic field is the process of flux emergence into the solar photosphere, and how the magnetic flux reorganizes to form the magnetic phenomena of active regions like sunspots and pores. Here, we present a spectropolarimetric and imaging data set from a region of emerging magnetic flux, in which a proto‐spot without penumbra forms a penumbra. During the formation of the penumbra the area and the magnetic flux of the spot increases. First results of our data analysis demonstrate that the additional magnetic flux, which contributes to the increasing area of the penumbra, is supplied by the region of emerging magnetic flux. We observe emerging bipoles that are aligned such that the spot polarity is closer to the spot. As an emerging bipole separates, the pole of the spot polarity migrates towards the spot, and finally merges with it. We speculate that this is a fundamental process, which makes the sunspot accumulate magnetic flux. As more and more flux is accumulated a penumbra forms and transforms the proto‐spot into a full‐fledged sunspot (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号