首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
向梁  吴德金  陈玲 《天文学报》2023,64(3):27-77
动力学阿尔文波是垂直波长接近离子回旋半径或者电子惯性长度的色散阿尔文波.由于波的尺度接近粒子的动力学尺度,动力学阿尔文波在太阳和空间等离子体加热、加速等能化现象中起重要作用.因此,动力学阿尔文波通常被认为是日冕加热的候选者.本研究工作深入、系统地调研了太阳大气中动力学阿尔文波的激发和耗散机制.基于日冕等离子体环境,介绍了几种常见的动力学阿尔文波激发机制:温度各向异性不稳定性、场向电流不稳定性、电子束流不稳定性、密度非均匀不稳定性以及共振模式转换.还介绍了太阳大气中动力学阿尔文波的耗散机制,并讨论了这些耗散机制对黑子加热、冕环加热以及冕羽加热的影响.不仅为认识太阳大气中动力学阿尔文波的驱动机制、动力学演化特征以及波粒相互作用提供合理的理论依据,而且有助于揭示日冕等离子体中能量储存和释放、粒子加热等能化现象的微观物理机制.  相似文献   

2.
我们认为存在于太阳高层大气中的一种稳定的物质交换,可以起到冷却日冕和加热色球一日冕过渡区的热机作用。还考虑到来自日冕的热传导和过渡区的辐射损失,计算了太阳过渡区的温度、密度和速度分布。并对物质流通量及速度边值与太阳过渡区厚度之间的关系作了讨论。  相似文献   

3.
赵金松 《天文学报》2012,(5):451-452
动力学阿尔文波是垂直波长接近离子回旋半径或电子惯性长度时的色散阿尔文波,在等离子体粒子加热、加速或反常输运等现象中能起重要作用.因此,在各类天体和空间等离子体环境中动力学阿尔文波的特性也一直是引起人们广泛兴趣和倍受关注的研究课题.本论文系统、深入地研究了不同等离子体环境下动力学阿尔文波的非线性波一波耦合相互作用过程,特别是对不同环境下波一波耦合导致的动力学阿尔文波非线性生长率进行了细致的分析.  相似文献   

4.
杨磊  孙畅  李家威 《天文学报》2023,64(6):61-37
阿尔文波在太阳风中普遍存在,对其中等离子体的加热与加速有重要意义.从太阳风中的结构、太阳风湍流、太阳风全球模型、等离子体不稳定性(参量衰变不稳定性和火蛇管不稳定性)、太阳风的加热与加速等方面,总结了近年来太阳风中阿尔文波相关的研究进展.结合目前的研究趋势,从亚阿尔文速太阳风、太阳风全球模型和太阳源区3个方向展望了未来阿尔文波的相关研究.  相似文献   

5.
近年来在大气温度与太阳活动的相关性研究中发现了QBO的调制作用,由于大气温度与太阳相关系数的高度剖面交替地呈现出正相关与负相关,且其相间距离与行星波的垂直结构大体一致,致使人们提出大气加热存在两个相互竞争的来源即太阳紫外幅射加热与上行的行星波的动力学加热。上行的行星波不仅会加热大气也应该会调制潮汐风并通过电离层发电机效应导致电场与电流的行星波周期的振荡或起伏,而当此电场沿磁  相似文献   

6.
本文在阿尔文波传播的假设条件下,求解斯托克斯参数转移方程组,计算阿尔文波对太阳黑子光谱中磁敏线Felλ6302.499的作用,并提出用观测资料对理论计算结果进行检验,以及估计阿尔文波流量的方法。  相似文献   

7.
本文研究了在重力分层、密度陡降的恒星大气中扰动的传播,得到的结果十分不同于绝热假设下推得的结果。指出运动模式对恒星大气中扰动的传播和激波形成的高度颇为重要。我们的计算表明,光球下的小扰动不能不受行扰地向外传播并形成激波。因此不能把色球和日冕的加热笼统地看成是对流层的声波和磁流波所耗散的结果,很可能是起源于光球之上不同高度的扰动。  相似文献   

8.
本文在文[7]的基础上进一步研究阿尔文波对太阳黑子非磁敏谱线FeIλ5691.505和λ5434.534的作用,发现波动所引起的谱线振荡和轮廓变形都不容忽视,但不同谱线所受影响的程度可以相差悬殊。我们在考虑阿尔文波作用的情况下,计算上列两条黑子谱线的理论轮廓并与观测对比,由此初步证实阿尔文波的传播是黑子的致冷机理。  相似文献   

9.
赵金松 《天文学报》2023,64(3):36-246
在无碰撞等离子体中,波粒相互作用会引起电磁场与粒子之间能量转移,其结果之一是重塑粒子速度分布函数.因而,如何定量化波粒相互作用是日球层和天体等离子体研究中的一个基础问题.近年来,在定量化波粒相互作用问题的研究中,取得了很多重要成果.将主要介绍相关理论研究上的进展,特别是,将重点介绍新近提出的度量共振和非共振波粒相互作用的理论方法.还将介绍该方法在度量内日球层阿尔文模式波、质子束流不稳定性和电子热流不稳定性中波粒相互作用上的应用.  相似文献   

10.
本文分析中子星的吸积流动,其中磁轴与自转轴重合.吸积盘内缘区域的波阻将使盘内的角速度偏离开普勒速度而减小,引力势能使流体加热和加速.吸积盘中有两类流动.完全亚声速流动的引力势能主要使吸积流加热.另一种流动有跨声速过渡和激波.这两种流动都表明,吸积盘的高温区域都位于过渡区中,而外部区域中气体温度不高.还计算了中子星磁层中的吸积流动.在极区距几个中子星半径处,气体被急剧加热,产生X射线辐射,形成热斑.这些结果与中子星吸积流动的主要特征一致.  相似文献   

11.
Endeve  Eirik  Leer  Egil 《Solar physics》2001,200(1-2):235-250
In coronal holes the electron (proton) density is low, and heating of the proton gas produces a rapidly increasing proton temperature in the inner corona. In models with a reasonable electron density in the upper transition region the proton gas becomes collisionless some 0.2 to 0.3 solar radii into the corona. In the collisionless region the proton heat flux is outwards, along the temperature gradient. The thermal coupling to electrons is weak in coronal holes, so the heat flux into the transition region is too small to supply the energy needed to heat the solar wind plasma to coronal temperatures. Our model studies indicate that in models with proton heating the inward heat conduction may be so inefficient that some of the energy flux must be deposited in the transition region to produce the proton fluxes that are observed in the solar wind. If we allow for coronal electron heating, the energy that is needed in the transition region to heat the solar wind to coronal temperatures, may be supplied by heat conduction from the corona.  相似文献   

12.
The mechanism of spatial resonance of Alfven waves for heating a collisionless plasma is studied in the presence of a twisted magnetic field. In addition to modifying the equilibrium condition for a cylindrical plasma, the azimuthal component of the magnetic field gives extra contribution to the energy deposition rate of the Alfven waves. This new term clearly brings out the effects associated with the finite lifetime of the Alfven waves. The theoretical system considered here conforms to the solar coronal regions.  相似文献   

13.
A. G. Hearn 《Solar physics》1977,51(1):159-168
The main differences between a coronal hole and quiet coronal regions are explained by a reduction of the thermal conduction coefficient by transverse components of the magnetic field in the transition region of quiet coronal regions.Calculations of minimum flux coronae show that if the flux of energy heating the corona is maintained constant while the thermal conductivity in the transition region is reduced, the coronal temperature, the pressure in the transition region and the corona, and the temperature gradient in the transition region all increase. At the same time the intensities of lines emitted from the transition region are almost unchanged. Thus all the main spectroscopically observed differences between coronal holes and quiet coronal regions are explained.The flux of energy heating the corona in both coronal holes and quiet coronal regions is 3.0 × 105 erg cm-2 s-1.The energy lost from coronal holes by the high speed streams in the solar wind is not sufficient to explain the difference in the coronal temperature in coronal holes and quiet coronal regions. The most likely explanation of the high velocity streams in the solar wind associated with coronal holes is that of Durney and Hundhausen.  相似文献   

14.
The particle aspect approach is adopted to investigate the trajectories of charged particles in the electromagnetic field of kinetic Alfven wave. Expressions are found for the dispersion relation, damping rate and associated currents in homogenous plasma. Kinetic effects of electrons and ions are included to study kinetic Alfven wave because both are important in the transition region. It is found that the ratio β of electron thermal energy density to magnetic field energy density and the ratio of ion to electron thermal temperature (Ti/Te) affect the dispersion relation, damping-rate and associated currents in both cases (warm and cold electron limits). The treatment of kinetic Alfven wave instability is based on the assumption that the plasma consists of resonant and non-resonant particles. The resonant particles participate in an energy exchange process, whereas the non-resonant particles support the oscillatory motion of the wave.  相似文献   

15.
Coronal density, temperature, and heat-flux distributions for the equatorial and polar corona have been deduced from Saito’s model of averaged coronal white-light (WL) brightness and polarization observations. These distributions are compared with those determined from a kinetic collisionless/exospheric model of the solar corona. This comparison indicates similar distributions at large radial distances (>?7 R) in the collisionless region. However, rather important differences are found close to the Sun in the acceleration region of the solar wind. The exospheric heat flux is directed away from the Sun, while that inferred from all WL coronal observations is in the opposite direction, i.e. conducting heat from the inner corona toward the chromosphere. This could indicate that the source of coronal heating extends up into the inner corona, where it maximizes at r>1.5 R, well above the transition region.  相似文献   

16.
A possible mechanism for the formation and heating of coronal loops through the propagation and damping of fast mode waves is proposed and studied in detail. Loop-like field structures are represented by a dipole field with the point dipole at a given distance below the solar surface. The density of the medium is determined by hydrostatic equilibrium along the field lines in an isothermal atmosphere. The fast mode waves propagating outward from the coronal base are refracted into regions with a low Alfvén speed and suffer collisionless damping when the gas pressure becomes comparable to the magnetic pressure. The propagation and damping of these waves are studied for three different cases: a uniform density at the coronal base, a density depletion within a given flux tube, and a density enhancement within a given flux tube. The fast mode waves are found to be important in the formation and heating of the loops if the wave energy flux density is of the order 105 ergs cm-2 s-1 at the coronal base.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
Two competing fundamental hypotheses are usually postulated in the solar coronal heating problem: heating by nanoflares and heating by waves. In the latter it is assumed that acoustic and magnetohydrodynamic disturbances whose amplitude grows as they propagate in a medium with a decreasing density come from the convection zone. The shock waves forming in the process heat up the corona. In this paper we draw attention to yet another very efficient shock wave generation process that can be realized under certain conditions typical for quiet regions on the Sun. In the approximation of stationary dissipative hydrodynamics we show that a shock wave can be generated in the quiet solar chromosphere–corona transition region by the fall of plasma from the corona into the chromosphere. This shock wave is directed upward, and its dissipation in the corona returns part of the kinetic energy of the falling plasma to the thermal energy of the corona. We discuss the prospects for developing a quantitative nonstationary model of the phenomenon.  相似文献   

18.
The method of Orthogonal Function Series Expansion (OFSE) is generalized and applied to the study of the evolution of the coupling of nondissipative torsional Alfven wave and fast wave in coronal loops. Using this method, the intrinsic angular frequency of the overall wave mode can be described mathematically and that of the Alfven waves along the magnetic lines in the coronal loop during the coupling of the Alfven and fast waves can be analyzed both theoretically and numerically. Also with this method, the relation between the coupling driven term and the Alfven wave resonance may be analyzed. Results of computation reveal the place of appearance of coupling resonance as well as the characteristics of the amplitudes of the Alfven and fast waves. As found by the calculations, if the footpoint driven angular frequency is not equal to the intrinsic angular frequency of the overall wave mode of the coronal loop and when a δ section appears at the place of coupled resonance, the radial gradient of the fast wave's amplitude is quite large. Sometimes it approximates to a discontinuity, and this is extremely favorable for the dissipation of the fast wave. If the footpoint driven angular frequency is equal to the intrinsic angular frequency of the overall wave mode and when a δ section occurs in the Alfven wave amplitude, abundant small-scale structures appear in the radial direction. Then the location of resonance approximately becomes a discontinuity, very favorable to the dissipation of the Alfven wave.  相似文献   

19.
We have investigated heating of solar polar coronal holes and acceleration of fast solar wind by means of lower hybrid (LH) waves. A three-fluid Maxwell model comprising electrons, protons, and α-particles is employed at around two solar radii heliocentric distance, where wave dissipation starts to be dominated by collisionless processes. We suggest specific wavenumber ranges corresponding to LH as well as stochastic instabilities and find that these instabilities may bring about a significant energy gain in positive ions.  相似文献   

20.
Analyses of the widths and shifts of optically thin emission lines in the ultraviolet spectrum of the active dwarf ε Eri (K2 V) are presented. The spectra were obtained using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope and the Far Ultraviolet Spectroscopic Explorer . The linewidths are used to find the non-thermal energy density and its variation with temperature from the chromosphere to the upper transition region. The energy fluxes that could be carried by Alfvén and acoustic waves are investigated, to test their possible roles in coronal heating. Acoustic waves do not appear to be a viable means of coronal heating. There is, in principle, ample flux in Alfvén waves, but detailed calculations of wave propagation are required before definite conclusions can be drawn concerning their viability. The high sensitivity and spectral resolution of the above instruments have allowed two-component Gaussian fits to be made to the profiles of the stronger transition region lines. The broad and narrow components that result share some similarities with those observed in the Sun, but in ε Eri the broad component is redshifted relative to the narrow component and contributes more to the total line flux. The possible origins of the two components and the energy fluxes implied are discussed. On balance our results support the conclusion of Wood, Linsky & Ayres, that the narrow component is related to Alfvén waves reaching to the corona, but the origin of the broad component is not clear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号