首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 837 毫秒
1.
Balthasar  H. 《Solar physics》2003,218(1-2):85-97
Spectropolarimetric time series of two sunspots are investigated to search for magnetic field oscillations. While the existence of velocity oscillations in the five-minute band is clearly confirmed, periodic variations of the magnetic field strength or the magnetic angles inclination and azimuth are small and restricted to very narrow areas. They occur in single frequency bins, but different for magnetic field strength and angles. Small dark structures embedded in one penumbra or in the near surroundings of the other spot exhibit enhanced power for the magnetic variations at all frequencies. Phase differences are rather unsure. The obtained values are in agreement with intrinsic magnetic field variations produced by slow magnetoacoustic modes as well as with an opacity mechanism connected with fast modes.  相似文献   

2.
Observations of the relation between continuum intensity and magnetic field strength in sunspots have been made for nearly five decades. This work presents full-Stokes measurements of the full-split (\(g = 3\)) line Fe i 1564.85 nm with a spatial resolution of \(0.5^{\prime\prime}\) obtained with the GREGOR Infrared Spectrograph in three large sunspots. The continuum intensity is corrected for instrumental scattered light, and the brightness temperature is calculated. Magnetic field strength and inclination are derived directly from the line split and the ratio of Stokes components. The continuum intensity (temperature) relations to the field strength are studied separately in the umbra, light bridges, and penumbra. The results are consistent with previous studies, and it was found that the scatter of values in the relations increases with increasing spatial resolution thanks to resolved fine structures. The observed relations show trends common for the umbra, light bridges, and the inner penumbra, while the outer penumbra has a weaker magnetic field than the inner penumbra at equal continuum intensities. This fact can be interpreted in terms of the interlocking comb magnetic structure of the penumbra. A comparison with data obtained from numerical simulations was made. The simulated data generally have a stronger magnetic field and a weaker continuum intensity than the observations, which may be explained by stray light and limited spatial resolution of the observations, and also by photometric inaccuracies of the simulations.  相似文献   

3.
We present the first solar vector magnetogram constructed from measurements of infra-red Mg I 12.32-μm line spectra. Observations were made at the McMath-Pierce Telescope using the Celeste spectrometer/polarimeter. Zeeman-split Stokes line spectra were fitted with Seares profiles to obtain the magnetic field parameters. Maps of absolute field strength, line-of-sight angle, and azimuth are presented. Analysis shows that the variation in field strength within a spatial resolution element, 2 arcseconds, is greatest in the sunspot penumbra and that this is most likely caused by vertical field strength gradients, rather than horizontal image smearing. Widths of the Zeeman-split σ components, assuming a formation layer thickness of 200 km, indicate that vertical field strength gradients can be as large as 6.5 G/km in a penumbra.  相似文献   

4.
The sunspot penumbra is a transition zone between the strong vertical magnetic field area (sunspot umbra) and the quiet Sun. The penumbra has a fine filamentary structure that is characterized by magnetic field lines inclined toward the surface. Numerical simulations of solar convection in inclined magnetic field regions have provided an explanation of the filamentary structure and the Evershed outflow in the penumbra. In this article, we use radiative MHD simulations to investigate the influence of the magnetic field inclination on the power spectrum of vertical velocity oscillations. The results reveal a strong shift of the resonance mode peaks to higher frequencies in the case of a highly inclined magnetic field. The frequency shift for the inclined field is significantly greater than that in vertical-field regions of similar strength. This is consistent with the behavior of fast MHD waves.  相似文献   

5.
Observations of emission in the Mgi b2 line at 5172 Å are presented for 13 flares. Also discussed are 3 flares which occurred in regions under observation but which showed no Mg emission. The Mg flare kernels resemble white-light flare kernels in their general morphology and location. Comparison of Mg filtergrams with magnetograms indicates that the Mg kernels occur at the feet of magnetic arches across neutral lines. Time-lapse Mg filtergram films indicate photospheric shearing motions near flare sites for several hours before flare onset. We have compared flare Mg emission with microwave and both hard and soft X-ray flare emissions. Examination at the time development of the 1981, July 27 flare shows that the microwave and X-ray bursts may be clearly related to the appearance of successive Mg flare kernels. We have also compared subjective, relative Mg flare importances with other flare emission measurements. For the full sample of flares, Mg importance is significantly correlated with hard and soft X-ray emission peaks, with X-ray ‘hardness’ (ratio of hard to soft peaks) and with the rise slope of soft X-ray bursts. The Mg importance does not correlate with the microwave peaks when the full sample of flares is used, but for the subset showing Mg emission there is significant correlation. No correlation with Hα importance was found. Our results suggest that Mg emission is associated with an impulsive component which may be absent from some flares. The San Fernando Observatory magnesium etalon filter system is described.  相似文献   

6.
It has been widely conjectured that solar flares are energized by the magnetic energy stored in complex active regions. Paradoxically, however, in attempting to show that magnetic changes cause or characterize flares, solar magnetic observations have produced equivocal results.In previous attempts at resolving the paradox, it has been contended that magnetic measurements are simply imprecise or that magnetic theories of flares are incorrect. We present an alternative explanation: the present use of magnetograms to examine active region structure through numerical integration of miscellaneous field lines (under various force-free assumptions) provides qualitative information only and does not utilize the quantitative information available. Therefore, we propose a new approach to the analysis of magnetograms which is illustrated with a highly symmetrized example that permits integration in closed form. The proposed approach exploits the cellular structure of the flux of field lines present in a complex active region. The various topological connectivities distinguish parent and daughter flux cells. A function F is developed expressing the flux partitioned into the daughter cell of interconnected field lines in a potential field. This F is a function of the location, strength, and relative motions of the photospheric sources. Then dF/dt is used as an EMF in the direct calculation of the stored magnetic energy available for flare production. In carrying out this program the flux partitioning surface (separatrix) is calculated along with its line of self-intersection (separator). The separator is the location of the principal energy release site.  相似文献   

7.
We have used a 128 × 128 format HgCdTl infrared array with the Sacramento Peak Observatory Vacuum Telescope (VTT) and Echelle spectrograph to obtain two-dimensional observations of the true magnetic field strength in a sunspot. The system we describe retains all of the spectral information contained in the unpolarized IR Fraunhofer line profile with time resolution of about a minute (depending on the scan area and spatial resolution). Unlike previous optical observations (cf. Adam, 1990), infrared observations readily allow direct field strength measurements out to the outer edge of the penumbra. Our data suggest that the magnetic flux density in the outer penumbra is not well described by an extrapolation of the quadratic polynomial, in normalized central distance, that describes the umbral field. We measure a relatively high field strength of 800 G at the penumbra-quiet-Sun boundary, which is consistent with the return-flux model of Osherovich and Garcia (1989).  相似文献   

8.
The energy source of a flare is the magnetic field in the corona. A topological model of the magnetic field is used here for interpreting the recently discovered drastic changes in magnetic field associated with solar flares. The following observational results are self‐consistently explained: (1) the transverse field strength decreases at outer part of active regions and increases significantly in their centers; (2) the center‐of‐mass positions of opposite magnetic polarities converge towards the magnetic neutral line just after flares onset; (3) the magnetic flux of active regions decreases steadily during the course of flares. For X‐class flares, almost 50% events show such changes. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present measurements of the longitudinal magnetic field component B of the young star BP Tau in the He I 5876 emission line formation region, i.e., in the accretion flow near the stellar surface. The values obtained (?1.7 kG and ?1.0 kG in 2000 and 2001, respectively) agree with the results of similar measurements by other authors. At the same time, we show that the previously obtained field strength at the magnetic pole, B p, and the inclination of the magnetic axis to the rotation axis, β, are untrustworthy. In our opinion, based on the B measurements available to date, it is not possible to conclude whether the star’s magnetic field is a dipole one or has a more complex configuration and to solve the question of whether this field is stationary. However, we argue that at least in the He I 5876 line formation region, the star’s magnetic field is not stationary and can be restructured in a time of the order of several hours. Nonstationary small-scale magnetic fields of active regions on the stellar surface and/or magnetospheric field line reconnection due to the twisting of these field lines as the star rotates could be responsible for the short-term magnetic field variability. It seems highly likely that there are no strictly periodic variations in brightness and emission line profiles in BP Tau due to the irregular restructuring of the star’s magnetic field.  相似文献   

10.
The profiles of the resonance lines of Caii have been studied in two large disk flares and in the surrounding plage. In the brightest portions of the flares no self-reversal in the central emission core was detected; self-reversed cores were present in the less bright portions of the flares. We find that as the intensity of the emission core increases the separation of the H2 and K2 peaks decreases monotonically, becoming unobservable at intensities near to 0.90 the local continuum. Possible reasons for the behavior of the H and K lines in flares are considered. It is suggested that the largest density enhancements in flares are found near the strongest magnetic field.  相似文献   

11.
We study the changes of the CaI λ6102.7 Å line profile and the magnetic field structure during the 1B/M2.2 while-light flare of August 12, 1981. The two brightest flare knots located in the penumbra of a sunspot with a δ configuration are investigated. The 1 ± V line profiles are analyzed. The reduction and analysis of our observations have yielded the following results. (1) The line profiles changed significantly during the flare, especially at the time of optical continuum emission observed near the flare maximum. In addition to the significant decrease in the depth, a narrow polarized emission whose Zeeman splitting corresponded to a longitudinal magnetic field strength of 3600 Gs was observed. This is much larger than the magnetic field strength in the underlying sunspot determined from the Zeeman splitting of absorption lines. (2) The largest changes of the CaI λ6102.7 Å line profile observed during the flare can lead to an underestimation of the longitudinal magnetic field strength measured with a video magnetograph by a factor of 4.5, but they cannot be responsible for the polarity reversal. (3) A sharp short-term displacement of the neutral line occurred at a time close to the flare maximum, which gave rise to a reversed-polarity magnetic field on a small area of the active region, i.e., a magnetic transient. This can be interpreted as a change in the inclination of the magnetic field lines to the line of sight during the flare. The short-term depolarization of the CaI λ6102.7 Å line emission observed at the other flare knot can also be the result of a change in the magnetic field structure. (4) These fast dynamic changes of the magnetic field lines occurred after the maximum of the impulsive flare phase and were close in time to the appearance of type II radio emission.  相似文献   

12.
We present simultaneous dual-frequency radio observations of Cygnus X-3 during a phase of low-level activity. We constrain the minimum variability time-scale to be 20 min at 43 GHz and 30 min at 15 GHz, implying source sizes of 2–4 au. We detect polarized emission at a level of a few per cent at 43 GHz which varies with the total intensity. The delay of ∼10 min between the peaks of the flares at the two frequencies is seen to decrease with time, and we find that synchrotron self-absorption and free–free absorption by entrained thermal material play a larger role in determining the opacity than absorption in the stellar wind of the companion. A shock-in-jet model gives a good fit to the light curves at all frequencies, demonstrating that this mechanism, which has previously been used to explain the brighter, longer lived giant outbursts in this source, is also applicable to these low-level flaring events. Assembling the data from outbursts spanning over two orders of magnitude in flux density shows evidence for a strong correlation between the peak brightness of an event, and the time-scale and frequency at which this is attained. Brighter flares evolve on longer time-scales and peak at lower frequencies. Analysis of the fitted model parameters suggests that brighter outbursts are due to shocks forming further downstream in the jet, with an increased electron normalization and magnetic field strength both playing a role in setting the strength of the outburst.  相似文献   

13.
We present new magnetic field measurements of the K2 main‐sequence star ϵ Eri based on principal components analysis (PCA) line‐profile reconstructions. The aim of this paper is to quantify the surface‐averaged magnetic field and search for possible variations. A total of 338 optical échelle spectra from our robotic telescope facility STELLA with a spectral resolution of 55 000 were available for analysis. This time‐series was used to search for the small line‐profile variations due to a surface magnetic field with the help of a PCA. Evidence for a spatial and temporal inhomogeneous magnetic field distribution is presented. The mean, surface averaged, magnetic field strength was found tobe 〈B〉 = 186 ± 47 G in good agreement with previous Zeeman‐broadening measurements. Clear short‐term variations of the surface averaged magnetic field of up to few tens Gauss were detected together with evidence for a three‐year cycle in the surface‐averaged magnetic field of ϵ Eri. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Torsional oscillations of seven single spots are studied based on the observations of the longitudinal magnetic field and the field of radial velocities in the photospheric Fe I λ 525.3 nm line. The periods of umbra and penumbra oscillations are 2.2–7.1 and 3.3–7.7 days, respectively. The spots at a greater solar latitude are characterized by a longer period of oscillations and a smaller axial strength of the magnetic field. The periods of umbra and penumbra oscillations increase with an increase in the period and amplitude of the sunspot umbra oscillations. The obtained results can point to a unitary mechanism of torsional oscillations of umbra and penumbra of single spots and a connection of these oscillations with the differential rotation of the Sun.  相似文献   

15.
We obtained three-dimensional interpolated portraits for the radial and torsional oscillations of fragments of 12 sunspots in the form of deviations of their polar coordinates from drift as functions of the time and distance from the sunspot center. We performed a wavelet analysis of the two orthogonal components and determined the dominant oscillation modes; the period varies between 40 and 100 min for different sunspots. We revealed two types of dominant modes, one is associated with the sunspot and the other is associated with its surrounding pores: the central-mode frequency depends on the maximum field strength of the sunspot and decreases from its center toward the boundary, while the peripheral-mode frequency depends on the heliographic latitude and decreases toward the sunspot boundary from the far periphery. We revealed radial variations in frequency and amplitude with a spatial period of 0.8 sunspot radius. The types of dominant modes and the radial variations in oscillation parameters are linked with the subphotospheric structure of an active region—with two types of spiral waves and concentric magnetic-field waves. We estimated the mean pore oscillation energy to be ~1030 erg and found a singular oscillator with a mean energy of ~1031 erg in the penumbra at a distance of 0.8 sunspot radius. We argue that the singular penumbra oscillator is the source of solar flares.  相似文献   

16.
Using a newly developed Aerospace digital videomagnetograph, three solar active regions are studied as to their magnetic configurations and their flare productivity. These three regions have very different types of magnetic configurations and different types of flare productivity. We review previous theoretical and experimental research on flares and magnetic energy storage, and discuss various ways to observe magnetic energy release due to flares. Results for six subflares are presented. Five showed no measurable magnetic energy change and one result is questionable.We show three counterexamples to Zirin's (1972) contention that as a rule H plage brightness is proportional to magnetic field strength. Each of these three cases involved two plage regions of the same polarity and equal field strengths with one of the plages adjacent to a neutral line. In all three cases the plage region nearer the neutral line was much brighter.  相似文献   

17.
NOAA active region 6659, during its June 1991 transit across the solar disk, showed highly sheared vector magnetic field structures and produced numerous powerful flares, including five white-light flares. Photospheric vector magnetograms of this active region were obtained at the Huairou Solar Observing Station of the Beijing Astronomical Observatory. After the resolution of the 180° ambiguity of the transverse magnetic field and transformation of off-center vector magnetograms to the heliographic plane, we have determined the photospheric vertical current density and discussed the relationship with powerful flares. The following results were obtained: (a) The powerful 3B/X12 flare on June 9, 1991 was triggered by the interaction between the large-scale electric current system and magnetic flux of opposite polarity. (b) The kernels of the powerful Hβ flare (sites of the white-light flare) were close to the peaks of the vertical electric current density. (c) Some small-scale structures of the vertical current relative to the magnetic islands of opposite polarity have not been found. This probably implies that the electric current is not always parallel to the magnetic field in solar active regions.  相似文献   

18.
Observational data on the Ni I 6768 Å line profile variations during the impulsive and post-impulsive phases of the July 18, 2002 while light flare (WLF) in the kernel of WLF emission and in other flare kernels are presented. The line profiles at the sites of intense photospheric motions in active regions are also studied. The effect of the observed Ni I 6768 Å line profile variations on the SOHO/MDI magnetic field measurements is estimated. The following conclusions have been reached. (1) The thermodynamic structure of the photo-spheric layers changes significantly during the flare. As a result, the Ni I line profile changes, particularly at the site of WLF emission. At this time, the line depth decreases significantly, but the line does not show any emission reversal. Subsequently, a relatively slow return to the conditions of an undisturbed photosphere is observed. (2) The technique of SOHO/MDI magnetic field measurements is insensitive to such line variations. Therefore, the detected variations during the flare did not result in any noticeable errors in the MDI longitudinal magnetic field measurements. (3) The line profile is broadened, shifted as a whole, and asymmetric at the sites of active regions where intense photospheric motions appear. In the MDI measurements, such changes in the profile lead to an underestimation of the magnetic field by approximately 10% if the line-of-sight velocity of the photo-spheric ejection is about 1.6 km s?1.  相似文献   

19.
Kosovichev  A.G.  Zharkova  V.V. 《Solar physics》1999,190(1-2):459-466
Using high-cadence magnetograms from the SOHO/MDI we have investigated variations of the photospheric magnetic field during solar flares and CMEs. In the case of a strong X-class flare of May 2, 1998, we have detected variations of magnetic field in a form of a rapidly propagating magnetic wave. During the impulsive phase of the flare we have observed a sudden decrease of the magnetic energy in the flare region. This provides direct evidence of magnetic energy release in solar flares. We discuss the physics of the magnetic field variations, and their relations to the Moreton Hα waves and the coronal waves observed by the EIT.  相似文献   

20.
We perform a statistical study of permanent changes in longitudinal fields associated with solar flares by tracking magnetic features. The YAFTA feature tracking algorithm is applied to GONG++ 1-minute magnetograms for 77 X-class and M-class flares to analyze the evolution and interaction of the magnetic features and to estimate the amount of canceled magnetic flux. We find that significantly more magnetic flux decreases than increases occurred during the flares, consistent with a model of collapsing loop structure for flares. Correlations between both total (unsigned) and net (signed) flux changes and the GOES peak X-ray flux are dominated by X-class flares at limb locations. The flux changes were accompanied in most cases by significant cancellation, most of which occurred during the flares. We find that the field strength and complexity near the polarity inversion line are approximately equally important in the flux cancellation processes that accompany the flares. We do not find a correlation between the flux cancellation events and the stepwise changes in the magnetic flux in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号