首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Patrick Michel  Willy Benz 《Icarus》2004,168(2):420-432
In this paper, we analyze the effect of the internal structure of a parent body on its fragment properties following its disruption in different impact energy regimes. To simulate an asteroid breakup, we use the same numerical procedure as in our previous studies, i.e., a 3D SPH hydrocode to compute the fragmentation phase and the parallel N-body code pkdgrav to compute the subsequent gravitational re-accumulation phase. To explore the importance of the internal structure in determining the collisional outcome, we consider two different parent body models: (1) a purely monolithic one and (2) a pre-shattered one which consists of several fragments separated by damaged zones and small voids. We present here simulations spanning two different impact energy regimes—barely disruptive and highly catastrophic—corresponding to the formation of the Eunomia and Koronis families, respectively. As we already found for the intermediate energy regime represented by the Karin family, pre-shattered parent bodies always lead to outcome properties in better agreement with those of real families. In particular, the fragment size distribution obtained by disrupting a monolithic body always contains a large gap between the largest fragment and the next largest ones, whereas it is much more continuous in the case of a pre-shattered parent body. In the latter case, the ejection speeds of large fragments are also higher and a smaller impact energy is generally required to achieve a similar degree of disruption. Hence, unless the internal structure of bodies involved in a collision is known, predicting accurately the outcome is impossible. Interestingly, disrupting a pre-shattered parent body to reproduce the Koronis family yields a fragment size distribution characterized by four almost identical largest objects, as observed in the real family. This peculiar outcome has been found before in laboratory experiments but is obtained for the first time following gravitational re-accumulation. Finally, we show that material belonging to the largest fragments of a family originates from well-defined regions inside the parent body (the extent and location of which are dependent upon internal structure), despite the many gravitational interactions that occur during the re-accumulation process. Hence fragment formation does not proceed stochastically but results directly from the velocity field imparted during the impact.  相似文献   

2.
Patrick Michel  Martin Jutzi 《Icarus》2011,211(1):535-545
The Veritas family is located in the outer main belt and is named after its apparent largest constituent, Asteroid (490) Veritas. The family age has been estimated by two independent studies to be quite young, around 8 Myr. Therefore, current properties of the family may retain signatures of the catastrophic disruption event that formed the family. In this paper, we report on our investigation of the formation of the Veritas family via numerical simulations of catastrophic disruption of a 140-km-diameter parent body, which was considered to be made of either porous or non-porous material, and a projectile impacting at 3 or 5 km/s with an impact angle of 0° or 45°. Not one of these simulations was able to produce satisfactorily the estimated size distribution of real family members. Based on previous studies devoted to either the dynamics or the spectral properties of the Veritas family, which already treated (490) Veritas as a special object that may be disconnected from the family, we simulated the formation of a family consisting of all members except that asteroid. For that case, the parent body was smaller (112 km in diameter), and we found a remarkable match between the simulation outcome, using a porous parent body, and the real family. Both the size distribution and the velocity dispersion of the real reduced family are very well reproduced. On the other hand, the disruption of a non-porous parent body does not reproduce the observed properties very well. This is consistent with the spectral C-type of family members, which suggests that the parent body was porous and shows the importance of modeling the effect of this porosity in the fragmentation process, even if the largest members are produced by gravitational reaccumulation during the subsequent gravitational phase. As a result of our investigations, we conclude that it is very likely that the Asteroid (490) Veritas and probably several other small members do not belong to the family as originally defined, and that the definition of this family should be revised. Further investigations will be performed to better constrain the definitions and properties of other asteroid families of different types, using the appropriate model of fragmentation. The identification of very young families in turn will continue to serve as a tool to check the validity of numerical models.  相似文献   

3.
Collisions are a fundamental process in the creation of asteroid families and in satellite formation. For this reason, understanding the outcome of impacts is fundamental to the accurate modeling of the formation and evolution of such systems. Smoothed-Particle Hydrodynamics/N-body codes have become the techniques of choice to study large-scale impact outcomes, including both the fragmentation of the parent body and the gravitational interactions between fragments. It is now possible to apply this technique to targets with either monolithic or rubble-pile internal structures. In this paper we apply these numerical techniques to rubble-pile targets, extending previous investigations by Durda et al. (Durda, D.D., Bottke, W.F., Enke, B.L., Merline, W.J., Asphaug, E., Richardson, D.C., Leinhardt, Z.M. [2004]. Icarus 170, 243–257; Durda, D.D., Bottke, W.F., Nesvorný, D., Enke, B.L., Merline, W.J., Asphaug, E., Richardson, D.C. [2007]. Icarus 186, 498–516). The goals are to study asteroid–satellite formation and the morphology of the size–frequency distributions (SFDs) from 175 impact simulations covering a range of collision speeds, impact angles, and impactor sizes. Our results show that low-energy impacts into rubble-pile and monolithic targets produce different features in the resulting SFDs and that these are potentially diagnostic of the initial conditions for the impact and the internal structure of the parent bodies of asteroid families. In contrast, super-catastrophic events (i.e., high-energy impacts with large specific impact energy) result in SFDs that are similar to each other. We also find that rubble-pile targets are less efficient in producing satellites than their monolithic counterparts. However, some features, such as the secondary-to-primary diameter ratio and the relative separation of components in binary systems, are similar for these two different internal structures of parent bodies.  相似文献   

4.
V. Carruba  J.A. Burns  W. Bottke 《Icarus》2003,162(2):308-327
Asteroid families are groupings of minor planets identified by clustering in their proper orbital elements; these objects have spectral signatures consistent with an origin in the break-up of a common parent body. From the current values of proper semimajor axes a of family members one might hope to estimate the ejection velocities with which the fragments left the putative break-up event (assuming that the pieces were ejected isotropically). However, the ejection velocities so inferred are consistently higher than N-body and hydro-code simulations, as well as laboratory experiments, suggest. To explain this discrepancy between today’s orbital distribution of asteroid family members and their supposed launch velocities, we study whether asteroid family members might have been ejected from the collision at low speeds and then slowly drifted to their current positions, via one or more dynamical processes. Studies show that the proper a of asteroid family members can be altered by two mechanisms: (i) close encounters with massive asteroids, and (ii) the Yarkovsky non-gravitational effect. Because the Yarkovsky effect for kilometer-sized bodies decreases with asteroid diameter D, it is unlikely to have appreciably moved large asteroids (say those with D > 15 km) over the typical family age (1-2 Gyr).For this reason, we numerically studied the mobility of family members produced by close encounters with main-belt, non-family asteroids that were thought massive enough to significantly change their orbits over long timescales. Our goal was to learn the degree to which perturbations might modify the proper a values of all family members, including those too large to be influenced by the Yarkovsky effect. Our initial simulations demonstrated immediately that very few asteroids were massive enough to significantly alter relative orbits among family members. Thus, to maximize gravitational perturbations in our 500-Myr integrations, we investigated the effect of close encounters on two families, Gefion and Adeona, that have high encounter probabilities with 1 Ceres, by far the largest asteroid in the main belt. Our results show that members of these families spreads in a of less than 5% since their formation. Thus gravitational interactions cannot account for the large inferred escape velocities.The effect of close encounters with massive asteroids is, however, not entirely negligible. For about 10% of the simulated bodies, close encounters increased the “inferred” ejection velocities from sub-100 m/s to values greater than 100 m/s, beyond what hydro-code and N-body simulations suggest are the maximum possible initial ejection velocity for members of Adeona and Gefion with D > 15 km. Thus this mechanism of mobility may be responsible for the unusually high inferred ejection speeds of a few of the largest members of these two families.To understand the orbital evolution of the entire family, including smaller members, we also performed simulations to account for the drift of smaller asteroids caused by the Yarkovsky effect. Our two sets of simulations suggest that the two families we investigated are relatively young compared to larger families like Koronis and Themis, which have estimated ages of about 2 Byr. The Adeona and Gefion families seems to be no more than 600 and 850 Myr old, respectively.  相似文献   

5.
Insights into collisional physics may be obtained by studying the asteroid belt, where large-scale collisions produced groups of asteroid fragments with similar orbits and spectra known as the asteroid families. Here we describe our initial study of the Karin cluster, a small asteroid family that formed 5.8±0.2 Myr ago in the outer main belt. The Karin cluster is an ideal ‘natural laboratory’ for testing the codes used to simulate large-scale collisions because the observed fragments produced by the 5.8-Ma collision suffered apparently only limited dynamical and collisional erosion. To date, we have performed more than 100 hydrocode simulations of impacts with non-rotating monolithic parent bodies. We found good fits to the size-frequency distribution of the observed fragments in the Karin cluster and to the ejection speeds inferred from their orbits. These results suggest that the Karin cluster was formed by a disruption of an ≈33-km-diameter asteroid, which represents a much larger parent body mass than previously estimated. The mass ratio between the parent body and the largest surviving fragment, (832) Karin, is ≈0.15-0.2, corresponding to a highly catastrophic event. Most of the parent body material was ejected as fragments ranging in size from yet-to-be-discovered sub-km members of the Karin cluster to dust grains. The impactor was ≈5.8 km across. We found that the ejections speeds of smaller fragments produced by the collision were larger than those of the larger fragments. The mean ejection speeds of >3-km-diameter fragments were . The model and observed ejection velocity fields have different morphologies perhaps pointing to a problem with our modeling and/or assumptions. We estimate that ∼5% of the large asteroid fragments created by the collision should have satellites detectable by direct imaging (separations larger than 0.1 arcsec). We also predict a large number of ejecta binary systems with tight orbits. These binaries, located in the outer main belt, could potentially be detected by lightcurve observations. Hydrocode modeling provides important constraints on the interior structure of asteroids. Our current work suggests that the parent asteroid of the Karin cluster may have been an unfractured (or perhaps only lightly fractured) monolithic object. Simulations of impacts into fractured/rubble pile targets were so far unable to produce the observed large gap between the first and second largest fragment in the Karin cluster, and the steep slope at small sizes (≈6.3 differential index). On the other hand, the parent asteroid of the Karin cluster was produced by an earlier disruptive collision that created the much larger, Koronis family some 2-3 Gyr ago. Standard interpretation of hydrocode modeling then suggests that the parent asteroid of the Karin cluster should have been formed as a rubble pile from Koronis family debris. We discuss several solutions to this apparent paradox.  相似文献   

6.
This paper builds on preliminary work in which numerical simulations of the collisional disruption of large asteroids (represented by the Eunomia and Koronis family parent bodies) were performed and which accounted not only for the fragmentation of the solid body through crack propagation, but also for the mutual gravitational interaction of the resulting fragments. It was found that the parent body is first completely shattered at the end of the fragmentation phase, and then subsequent gravitational reaccumulations lead to the formation of an entire family of large and small objects with dynamical properties similar to those of the parent body. In this work, we present new and improved numerical simulations in detail. As before, we use the same numerical procedure, i.e., a 3D SPH hydrocode to compute the fragmentation phase and the parallel N-body code pkdgrav to compute the subsequent gravitational reaccumulation phase. However, this reaccumulation phase is now treated more realistically by using a merging criterion based on energy and angular momentum and by allowing dissipation to occur during fragment collisions. We also extend our previous studies to the as yet unexplored intermediate impact energy regime (represented by the Flora family formation) for which the largest fragment's mass is about half that of the parent body. Finally, we examine the robustness of the results by changing various assumptions, the numerical resolution, and different numerical parameters. We find that in the lowest impact energy regime the more realistic physical approach of reaccumulation leads to results that are statistically identical to those obtained with our previous simplistic approach. Some quantitative changes arise only as the impact energy increases such that higher relative velocities are reached during fragment collisions, but they do not modify the global outcome qualitatively. As a consequence, these new simulations confirm previous main results and still lead to the conclusion that: (1) all large family members must be made of gravitationally reaccumulated fragments; (2) the original fragment size distribution and their orbital dispersion are respectively steeper and smaller than currently observed for the real families, supporting recent studies on subsequent evolution and diffusion of family members; and (3) the formation of satellites around family members is a frequent and natural outcome of collisional processes.  相似文献   

7.
We present a self-consistent numerical algorithm aimed at predicting the outcomes of high-velocity impacts between asteroids (or other small bodies of the solar system), based on a set of model input parameters which can be estimated from the available experimental evidence, and including the possible gravitational reaccumulation of ejected fragments whose velocity is less than a suitably defined escape velocity. All the fragment mass distributions are modelled by truncated power laws, and a possible correlation between fragment ejection velocity and mass is taken into account in different ways, including a probabilistic one. We analyze in particular the effectiveness of the gravitational reaccumulation process in terms of different choices of the collisional parameters and the assumed relationship between fragment speed and mass. Both the transition size beyond which solid targets are likely to reaccumulate a large fraction of the fragment mass and the collision energy needed to disperse most of the fragments are sensitive functions of the assumed fragment velocity versus mass relationship. We also give some examples of how our algorithm can be applied to study the origin and collisional history of small solar system bodies, including the asteroid 951 Gaspra (recently imaged by the Galileo probe) and the asteroid families.  相似文献   

8.
We present simulations of the gravitational collapse of a mono-disperse set of spherical particles for studying shape and spin properties of re-accumulated members of asteroid families. Previous numerical studies have shown that these “gravitational aggregates” exhibit properties similar to granular continuum models described by Mohr-Coulomb theory. A large variety of shapes is thus possible, in principle consistent with the observed population of asteroid shapes.However, it remains to be verified that the re-accumulation following a catastrophic disruption is capable of naturally producing those shapes. Conversely, we find that fluid equilibrium shapes (flattened two-axis spheroids, in particular) are preferentially created by re-accumulation. This is rather unexpected, since the dynamical system used could allow for other stable configurations. Jacobi three-axial ellipsoids can also be created, but this seems to be a less common outcome.The results obtained so far seem to underline the importance of other non-disruptive shaping factors during the lifetime of rubble-pile asteroids.  相似文献   

9.
10.
Asteroid families are the byproducts of catastrophic collisions whose fragments form clusters in proper semimajor axis, eccentricity, and inclination space. Although many families have been observed in the main asteroid belt, only two very young families, Karin and Veritas, have well-determined ages. The ages of other families are needed, however, if we hope to infer information about their ejection velocity fields, space weathering processes, etc. In this paper, we developed a method that allows us to estimate the ages of moderately young asteroid families (approximately in between 0.1 and 1 Gyr). We apply it to four suitable cases—Erigone, Massalia, Merxia, and Astrid—and derive their likely ages and approximate ejection velocity fields. We find that Erigone and Merxia were produced by large catastrophic disruption events (i.e., parent body ?100 km) that occurred approximately 280 and 330 Myr ago, respectively. The Massalia family was likely produced by a cratering event on Asteroid (20) Massalia less than 200 Myr ago. Finally, the Astrid family, which was produced by the disruption of a 60-70 km asteroid, is 100-200 Myr old, though there is considerable uncertainty in this result. We estimate that the initial ejection velocities for these families were only a few tens of meters per second, consistent with numerical hydrocode models of asteroid impacts. Our results help to verify that asteroid families are constantly undergoing dynamical orbital evolution from thermal (Yarkovsky) forces and spin vector evolution from thermal (YORP) torques.  相似文献   

11.
Numerical simulations of asteroid breakups, including both the fragmentation of the parent body and the gravitational interactions between the fragments, have allowed us to reproduce successfully the main properties of asteroid families formed in different regimes of impact energy, starting from a non-porous parent body. In this paper, using the same approach, we concentrate on a single regime of impact energy, the so-called catastrophic threshold usually designated by , which results in the escape of half of the target’s mass. Thanks to our recent implementation of a model of fragmentation of porous materials, we can characterize for both porous and non-porous targets with a wide range of diameters. We can then analyze the potential influence of porosity on the value of , and by computing the gravitational phase of the collision in the gravity regime, we can characterize the collisional outcome in terms of the fragment size and ejection speed distributions, which are the main outcome properties used by collisional models to study the evolutions of the different populations of small bodies. We also check the dependency of on the impact speed of the projectile.In the strength regime, which corresponds to target sizes below a few hundreds of meters, we find that porous targets are more difficult to disrupt than non-porous ones. In the gravity regime, the outcome is controlled purely by gravity and porosity in the case of porous targets. In the case of non-porous targets, the outcome also depends on strength. Indeed, decreasing the strength of non-porous targets make them easier to disrupt in this regime, while increasing the strength of porous targets has much less influence on the value of . Therefore, one cannot say that non-porous targets are systematically easier or more difficult to disrupt than porous ones, as the outcome highly depends on the assumed strength values. In the gravity regime, we also confirm that the process of gravitational reaccumulation is at the origin of the largest remnant’s mass in both cases. We then propose some power-law relationships between and both target’s size and impact speed that can be used in collisional evolution models. The resulting fragment size distributions can also be reasonably fitted by a power-law whose exponent ranges between −2.2 and −2.7 for all target diameters in both cases and independently on the impact velocity (at least in the small range investigated between 3 and 5 km/s). Then, although ejection velocities in the gravity regime tend to be higher from porous targets, they remain on the same order as the ones from non-porous targets.  相似文献   

12.
Spectroscopic observations of Asteroid (4) Vesta and numerous members of the Vesta family located in the inner asteroid belt have determined that these objects have reflectance properties of basaltic material. A plausible hypothesis is that the surface of Vesta was punctured by large impacts in the past which dispersed fragments of its basaltic crust into space and produced one of the most prominent asteroid families ever created in the belt. Until recently, Vesta was the only known object in the asteroid belt which underwent differentiation and survived to the present epoch. Since 2000, many new small basaltic asteroids have been discovered in the inner and outer parts of the asteroid belt, possibly representing fragments from distinct differentiated bodies. These discoveries may help us to better understand the number and nature of objects in the inner Solar System that underwent geological differentiation. To investigate these issues we performed extensive numerical simulations whose aim was to reproduce, as precisely as possible, the dynamical evolution of Vesta's ejected fragments over timescales comparable to the family's age. Specifically, we numerically integrated the orbital evolution of 6600 test bodies with orbits that started within the Vesta family and dynamically evolved over 2 Gy. Our model included gravitational perturbation of all planets (except Mercury) and the Yarkovsky effect. The results show that a relatively large fraction of the original Vesta family members may have evolved out of the family borders defined by clustering algorithms and are now dispersed over the inner asteroid belt. We compared the orbital distribution of our model fragments with the orbital locations of known basaltic asteroids in various parts of the inner main belt to find that: (i) Most basaltic asteroids with semimajor axis located outside the Vesta family's borders in the inner main belt, including (809) Lundia and (956) Elisa, are most likely fugitives from the Vesta family that have evolved to their current orbits via various identified dynamical pathways. Our results also suggest that the Vesta family is at least ∼1 Gy old. (ii) Interestingly, orbits of many basaltic asteroids with , like those of (4796) Lewis and (5379) Abehiroshi, are displaced from the Vesta family to low inclinations and are not obtained in our simulations with sufficient efficiency. We propose that: (i) these small basaltic asteroids may be fragments of differentiated bodies other than (4) Vesta; or (ii) they were liberated from the Vesta's surface before (or during) the Late Heavy Bombardment epoch ∼3.8 Gy ago and their orbital inclinations separated from that of Vesta when secular resonances swept through the region.  相似文献   

13.
In this paper, we compare the outcome of high-velocity impact experiments on porous targets, composed of pumice, with the results of simulations by a 3D SPH hydrocode in which a porosity model has been implemented. The different populations of small bodies of our Solar System are believed to be composed, at least partially, of objects with a high degree of porosity. To describe the fragmentation of such porous objects, a different model is needed than that used for non-porous bodies. In the case of porous bodies, the impact process is not only driven by the presence of cracks which propagate when a stress threshold is reached, it is also influenced by the crushing of pores and compaction. Such processes can greatly affect the whole body's response to an impact. Therefore, another physical model is necessary to improve our understanding of the collisional process involving porous bodies. Such a model has been developed recently and introduced successfully in a 3D SPH hydrocode [Jutzi, M., Benz, W., Michel, P., 2008. Icarus 198, 242-255]. Basic tests have been performed which already showed that it is implemented in a consistent way and that theoretical solutions are well reproduced. However, its full validation requires that it is also capable of reproducing the results of real laboratory impact experiments. Here we present simulations of laboratory experiments on pumice targets for which several of the main material properties have been measured. We show that using the measured material properties and keeping the remaining free parameters fixed, our numerical model is able to reproduce the outcome of these experiments carried out under different impact conditions. This first complete validation of our model, which will be tested for other porous materials in the future, allows us to start addressing problems at larger scale related to small bodies of our Solar System, such as collisions in the Kuiper Belt or the formation of a family by the disruption of a porous parent body in the main asteroid belt.  相似文献   

14.
The Agnia asteroid family, a cluster of asteroids located near semimajor axis a=2.79 AU, has experienced significant dynamical evolution over its lifetime. The family, which was likely created by the breakup of a diameter D∼50 km parent body, is almost entirely contained within the high-order secular resonance z1. This means that unlike other families, Agnia's full extent in proper eccentricity and inclination is a byproduct of the large-amplitude resonant oscillations produced by this resonance. Using numerical integration methods, we found that the spread in orbital angles observed among Agnia family members would have taken at least 40 Myr to create; this sets a lower limit on the family's age. To determine the upper bound on Agnia's age, we used a Monte Carlo model to track how the small members in the family evolve in semimajor axis by Yarkovsky thermal forces. Our results indicate the family is no more than 140 Myr old, with a best-fit age of 100+30−20 Myr. Using two independent methods, we also determined that the D∼5 km fragments were ejected from the family-forming event at a velocity near 15 m/s. This velocity is consistent with results from numerical hydrocode simulations of asteroid impacts and observations of other similarly sized asteroid families. Finally, we found that 57% of known Agnia fragments were initially prograde rotators. The reason for this limited asymmetry is unknown, though we suspect it is a fluke produced by the stochastic nature of asteroid disruption events.  相似文献   

15.
We present numerical simulations of near-Earth asteroid (NEA) tidal disruption resulting in bound, mutually orbiting systems. Using a rubble pile model we have constrained the relative likelihoods for possible physical and dynamical properties of the binaries created. Overall 110,500 simulations were run, with each body consisting of ∼1000 particles. The encounter parameters of close approach distance and velocity were varied, as were the bodies' spin, elongation and spin axis direction. The binary production rate increases for closer encounters, at lower speeds, for more elongated bodies, and for bodies with greater spin. The semimajor axes for resultant binaries are peaked between 5 to 20 primary radii, and there is an overall trend for high eccentricity, with 97% of binaries having e > 0.1. The secondary-to-primary size ratios of the simulated binaries are peaked between 0.1 and 0.2, similar to trends among observed asteroid binaries. The spin rates of the primary bodies are narrowly distributed between 3.5- and 6-h periods, whereas the secondaries' periods are more evenly distributed and can exceed 15-h periods. The spin axes of the primary bodies are very closely aligned with the angular momenta of the binary orbits, whereas the secondary spin axes are nearly random. The shapes of the primaries show a large distribution of axis ratios, where those with low elongation (ratio of long and short axis) are both oblate and prolate, and nearly all with large elongation are prolate. This work presents results that suggest tidal disruption of gravitational aggregates can make binaries physically similar to those currently observed in the NEA population. As well, tidal disruption may create an equal number of binaries with qualities different from those observed, mostly binaries with large separation and with elongated primaries.  相似文献   

16.
Preliminary results of an improved version of the semiempirical model for catastrophic break up processes developed by Paolicchi et al., (1989) are presented. Among the several changes with respect to the old version, the most important seem to be related to the new treatment of gravitational effects, including self-compression and reaccumulation of fragments. In particular, the new model is able to analyze processes involving both cm-sized objects, like those studied by means of laboratory experiments, as well as much larger bodies, for which self-gravitational effects are dominant; moreover, in this latter case the model seems in principle adequate to describe with the same physics very different phenomena, like the formation of plausible asteroid families and the creation of single, rapidly spinning, objects. This fact, if confirmed by refined analyses, may be of high importance for our general understanding of asteroid collisional evolution.  相似文献   

17.
We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high-e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect, “rubble pile” asteroid geophysics, and gravitational interactions. The YORP effect torques a “rubble pile” asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thus creating a chaotic ternary system. The initially chaotic binary can be stabilized to create a synchronous binary by components of the fissioned secondary asteroid impacting the primary asteroid, solar gravitational perturbations, and mutual body tides. These results emphasize the importance of the initial component size distribution and configuration within the parent asteroid. NEAs may go through multiple binary cycles and many YORP-induced rotational fissions during their approximately 10 Myr lifetime in the inner Solar System. Rotational fission and the ensuing dynamics are responsible for all NEA systems including the most commonly observed synchronous binaries.  相似文献   

18.
《Icarus》1998,132(1):113-124
We present results of two-dimensional gravitationalN-body simulations of the late stage of planetary formation. This stage is characterized by the direct accretion of hundreds of lunar-sized planetesimals into planetary bodies. Our simulation code is based on the Hermite Individual Timestep integration algorithm, and gravitational interactions among all bodies are included throughout the simulations. We compare our simulation with earlier works that do not include all interactions, and we find very good agreement. A previously published collisional fragmentation model is included in our simulation to study the effects of the production of fragments on the subsequent evolution of the larger planetary bodies. It is found that for realistic two-body collisions that, according to this model, both bodies will suffer fragmentation, and that the outcome of the collision will be a relatively large core containing most of the mass and a few small fragments. We present the results of simulations that include this simple fragmentation model. They indicate that the presence of small fragments have only a small effect on the growth or orbital evolution of the large planet-sized bodies.  相似文献   

19.
Asteroid dynamical families are supposed to be formed from the collisional disruption of parent bodies. As a consequence, the investigation of the surface properties of small and large family members may give some hints on the nature of the dynamical group, the internal composition of the parent body, and the role played by space weathering processes in modifying the spectral behavior of the members' surfaces. In this work we present visible-near-infrared observations of 24 Jupiter Trojans belonging to seven dynamical families of both the L4 and L5 swarms. The most important characteristics we found is the uniformity of the Trojans population. All the investigated Trojans have featureless spectra and a spectral behavior typical of the primitive P and D taxonomic classes. In particular, no signatures of water ice have been found on the spectra of these primordial bodies. From our investigation, the L4 and L5 clouds appear to be compositionally indistinguishable. Tentative models of the surface composition, based on the Hapke theory, are presented and discussed.  相似文献   

20.
Establishing connections between meteorites and their parent asteroids is an important goal of planetary science. Several links have been proposed in the past, including a spectroscopic match between basaltic meteorites and (4) Vesta, that are helping scientists understand the formation and evolution of the Solar System bodies. Here we show that the shocked L chondrite meteorites, which represent about two thirds of all L chondrite falls, may be fragments of a disrupted asteroid with orbital semimajor axis a=2.8 AU. This breakup left behind thousands of identified 1–15 km asteroid fragments known as the Gefion family. Fossil L chondrite meteorites and iridium enrichment found in an ≈467 Ma old marine limestone quarry in southern Sweden, and perhaps also ∼5 large terrestrial craters with corresponding radiometric ages, may be tracing the immediate aftermath of the family-forming collision when numerous Gefion fragments evolved into the Earth-crossing orbits by the 5:2 resonance with Jupiter. This work has major implications for our understanding of the source regions of ordinary chondrite meteorites because it implies that they can sample more distant asteroid material than was previously thought possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号