首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five planetary nebulae are known to show hydrogen-poor material nearthe central star. In the case of A58, this gas was ejected following alate thermal pulse similar to Sakurai's Object. In this paper I will reviewthese five objects. One of them, IRAS 18333 –2357, may not be a truePN. I will show that there is a strong case for a relation to the [WC]stars and their relatives, the weak emission-line stars. The surfaceabundances of the [WC] stars are explained via diffuse overshoot intothe helium layer. The hydrogen-poor PNe do not support this: theirabundances indicate a change of abundance with depth in the heliumlayer. A short-lived phase of very high mass loss, the r-AGB, isindicated. Sakurai's Object may be at the start of such a phase, and mayevolve to very low stellar temperatures.  相似文献   

2.
[WC] central stars of planetary nebulae are members of the larger class of hydrogen-deficient central stars. The whole class constitutes about20% of all spectroscopically-known central stars. Observational connections between [WC] central stars and the born-again phenomenon show that at least a fraction of the [WC] stars can be createdthrough this scenario. However, it is unlikely that the class as a wholeevolved through this channel.In this paper the arguments against a born-again origin for the whole class of [WC] central stars of planetary nebula are outlined. It is suggested that the roleof the H-deficient weak emission lines stars might be crucial in explaining the origin of [WC]stars. It is also demonstrated how difficult it isto pin down the exact stellar parameters of these objects (which help toposition them on the HR diagram). This is due to the largely unknown distancesand to the fact that small changesin the model assumptions can have large repercussions on the derived parameters.This difficultyhampers our efforts to determine the true evolutionary position of individual [WC] central stars, as well as their relationship to one another, andtherefore pin down their origin.  相似文献   

3.
We have obtained ISO SWS spectroscopy of WR 146 (WC6+O) covering the wavelength range 2.6-20 μm. WC6 wind emission is observed in numerous lines of He II and C IV, as well as in the [Ne III] 15.5 μm line, but not in [Ne II] 12.81 or [Ne V] 14.32 μm. An analysis of these spectra (and complementary radio and optical data) yields for the WC6 star: v∞ = 2700 km s-1; M=2.6×10-5M⊙yr-1; C/He = 0.15; and a neon abundance bound of 3.4×10-3≤Ne/He≤6.8×10-3. The neon abundance is close to that predicted in stellar evolution models of WC stars. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Planetary nebulae (PNe) in the Large Magellanic Cloud (LMC) offer the unique opportunity to study both the population and evolution of low- and intermediate-mass stars, by means of the morphological type of the nebula. Using observations from our LMC PN morphological survey, and including images available in the Hubble Space Telescope Data Archive and published chemical abundances, we find that asymmetry in PNe is strongly correlated with a younger stellar population, as indicated by the abundance of elements that are unaltered by stellar evolution (Ne, Ar, and S). While similar results have been obtained for Galactic PNe, this is the first demonstration of the relationship for extragalactic PNe. We also examine the relation between morphology and abundance of the products of stellar evolution. We found that asymmetric PNe have higher nitrogen and lower carbon abundances than symmetric PNe. Our two main results are broadly consistent with the predictions of stellar evolution if the progenitors of asymmetric PNe have on average larger masses than the progenitors of symmetric PNe. The results bear on the question of formation mechanisms for asymmetric PNe-specifically, that the genesis of PNe structure should relate strongly to the population type, and by inference the mass, of the progenitor star and less strongly on whether the central star is a member of a close binary system.  相似文献   

5.
High spectral resolution spectroscopy has proved to be very useful for the advancement of chemical abundances studies in photoionized nebulae, such as H II regions and planetary nebulae (PNe). Classical analyses make use of the intensity of bright collisionally excited lines (CELs), which have a strong dependence on the electron temperature and density. By using high resolution spectrophotometric data, our group has led the determination of chemical abundances of some heavy element ions, mainly O++, O+, and C++ from faint recombination lines (RLs), allowing us to deblend them from other nearby emission lines or sky features. The importance of these lines is that their emissivity depends weakly on the temperature and density structure of the gas. The unresolved issue in this field is that recombination lines of heavy element ions give abundances that are about 2–3 times higher than those derived from CELs – in H II regions – for the same ion, and can even be a factor of 70 times higher in some PNe. This uncertainty puts into doubt the validity of face values of metallicity that we use as representative not only for ionized nebulae in the Local Universe, but also for star‐forming dwarf and spiral galaxies at different redshifts. Additionally, high‐resolution data can allow us to detect and deblend faint lines of neutron capture element ions in PNe. This information would introduce further restrictions to evolution models of AGBs and would help to quantify the chemical enrichment in s‐elements produced by low and intermediate mass stars. The availability of an échelle spectrograph at the E‐ELT will be of paramount interest to: (a) extend the studies of heavyelement recombination lines to low metallicity objects, (b) to extend abundance determinations of s‐elements to planetary nebulae in the extragalactic domain and to bright Galactic and extragalactic H II regions. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We present the first digital CCD images and long-slit spectroscopy of the optical ring nebula around the Wolf–Rayet star θ Mus. The CCD images obtained through narrow-band filters centred at [O  iii ] and Hα show that the nebula has a filamentary structure, similar to supernova remnants, mainly seen in [O  iii ]. A spatial detachment between [O  iii ] and Hα images suggests excitation stratification, or multiple rings. An analysis of the physical conditions in the nebula was performed by means of long-slit CCD spectra. The spectral images show that the nebula is of low density and medium excitation. By means of quotients of recombination and collisional spectral line fluxes we determine that the principal excitation mechanism is photoionization. We have determined the electronic temperature and density, and chemical abundances for the oxygen at different sites within the nebula. Nebular chemical abundances are found to be similar to the Galactic ISM, indicating that the nebula is mainly composed of swept up material.  相似文献   

7.
A number of strong infrared forbidden lines have been observed in several evolved Wolf–Rayet (WR) star winds, and these are important for deriving metal abundances and testing stellar evolution models. In addition, because these optically thin lines form at large radius in the wind, their resolved profiles carry an imprint of the asymptotic structure of the wind flow. This work presents model forbidden line profile shapes formed in axisymmetric winds. It is well known that an optically thin emission line formed in a spherical wind expanding at constant velocity yields a flat-topped emission profile shape. Simulated forbidden lines are produced for a model stellar wind with an axisymmetric density distribution that treats the latitudinal ionization self-consistently and examines the influence of the ion stage on the profile shape. The resulting line profiles are symmetric about line centre. Within a given atomic species, profile shapes can vary between centrally peaked, doubly peaked, and approximately flat-topped in appearance depending on the ion stage (relative to the dominant ion) and viewing inclination. Although application to WR star winds is emphasized, the concepts are also relevant to other classes of hot stars such as luminous blue variables and Be/B[e] stars.  相似文献   

8.
We present a detailed analysis of the planetary nebula M4–18 (G146.7+07.6) and its WC10-type Wolf–Rayet (WR) central star, based on high‐quality optical spectroscopy (WHT/UES, INT/IDS, WIYN/DensPak) and imaging ( HST /WFPC2). From a non-LTE model atmosphere analysis of the stellar spectrum, we derive T eff=31 kK,     v =160 km s−1 and abundance number ratios of H/He<0.5, C/He=0.60 and O/He=0.10. These parameters are remarkably similar to those of He 2–113 ([WC10]). Assuming an identical stellar mass to that determined by De Marco et al. for He 2–113, we obtain a distance of 6.8 kpc to M4–18 [ E ( B−V )=0.55 mag from nebular and stellar techniques]. This implies that the planetary nebula of M4–18 has a dynamical age of ∼3100 yr, in contrast to ≥270 yr for He 2–113. This is supported by the much higher electron density of the latter. These observations may be reconciled with evolutionary predictions only if [WC]-type stars exhibit a range in stellar masses.
Photoionization modelling of M4–18 is carried out using our stellar WR flux distribution, together with blackbody and Kurucz energy distributions obtained from Zanstra analyses. We conclude that the ionizing energy distribution from the WR model provides the best consistency with the observed nebular properties, although discrepancies remain.  相似文献   

9.
To explain the variety of observed optical emission stratification in the shells around Wolf-Rayet stars, we have calculated the nonstationary cooling of a homogeneous gas layer heated to a temperature (0.4–2) × 105 K. We have assumed that the nebula is ionized by its central star and consists of a rarefied gas and a set of clouds with different densities through which adiabatic shock waves produced by the stellar wind propagate. Based on this model, we have determined the sequence in which the emission in Hα and in nebular oxygen lines appears. The Hα emission attributable to the electron-collision excitation of hydrogen atoms is produced earliest on the periphery of nebulae, the [O III] line emission follows next, and, finally, the Hα recombination emission is produced. The results obtained are in good agreement with the observational data.  相似文献   

10.
We present echelle spectroscopy in the 3500- to 7060-... range for two positions of the Orion nebula. The data were obtained using the 2.1-m telescope at Observatorio Astronómico Nacional in San Pedro Mártir, Baja California. We have measured the intensities of about 220 emission lines, in particular 81 permitted lines of C+, N+, N++, O0, O+, Ne0, Si+, Si++ and S+, some of them produced by recombination only and others mainly by fluorescence. We have determined electron temperatures, electron densities and ionic abundances using different continuum and line intensity ratios. We derived the He, C and O abundances from recombination lines and find that the C/H and O/H values are very similar to those derived from B stars of the Orion association, and that these nebular values are independent of the temperature structure. We have also derived abundances from collisionally excited lines. These abundances depend on the temperature structure; accurate t 2 values have been derived comparing the O II recombination lines with the [O III ] collisionally excited lines. The gaseous abundances of Mg, Si and Fe show significant depletions, implying that a substantial fraction of these atoms is tied up in dust grains. The derived depletions are similar to those found in warm clouds of the Galactic disc, but are not as large as those found in cold clouds. A comparison of the solar and Orion chemical abundances is made.  相似文献   

11.
We present high-quality optical spectroscopic observations of the planetary nebula (PN) Hf 2-2. The spectrum exhibits many prominent optical recombination lines (ORLs) from heavy-element ions. Analysis of the H  i and He  i recombination spectrum yields an electron temperature of ∼900 K, a factor of 10 lower than given by the collisionally excited [O  iii ] forbidden lines. The ionic abundances of heavy elements relative to hydrogen derived from ORLs are about a factor of 70 higher than those deduced from collisionally excited lines (CELs) from the same ions, the largest abundance discrepancy factor (adf) ever measured for a PN. By comparing the observed O  ii λ4089/λ4649 ORL ratio to theoretical value as a function of electron temperature, we show that the O  ii ORLs arise from ionized regions with an electron temperature of only ∼630 K. The current observations thus provide the strongest evidence that the nebula contains another previously unknown component of cold, high-metallicity gas, which is too cool to excite any significant optical or ultraviolet CELs and is thus invisible via such lines. The existence of such a plasma component in PNe provides a natural solution to the long-standing dichotomy between nebular plasma diagnostics and abundance determinations using CELs on the one hand and ORLs on the other.  相似文献   

12.
An analysis is undertaken of the relation between dust/gas mass ratios and elemental abundances within planetary nebulae (PNe). It is found that M DUST/ M GAS is broadly invariant with abundance, and similar to the values observed in asymptotic giant branch (AGB)-type stars. However, it is noted that the masses of dust observed in low-abundance PNe are similar to the masses of heavy elements observed in the gas phase. This is taken to imply that levels of elemental depletion must be particularly severe, and extend to many more species than have been identified so far. In particular, given that levels of C and O depletion are likely to be large, then this probably implies that species such as Fe, S, Si and Mg are depleted as well. There is already evidence for depletion of Fe, Si and Mg in individual PNe. It follows that whilst quoted abundances may accurately reflect gas-phase conditions, they are likely to be at variance with intrinsic abundances in low Z N nebulae.
Finally, we note that there appears to be a variation in dust/gas mass ratios with galactocentric distance, with gradient similar to that observed for several elemental abundances. This may represent direct evidence for a correlation between dust/gas mass ratios and nebular abundances.  相似文献   

13.
We present the results of a pilot project of spectroscopic observations for planetary nebulae (PNe) and PN candidates in Canis Major, a sky region where the remnant of a disrupted dwarf galaxy cannibalized by the Milky Way may be located. The spectra of seven objects were taken while testing the SALT spectrograph (South African Astronomical Observatory). All elemental abundances have been obtained by the T e method, where the electron temperature is calculated directly using the measured weak auroral [OIII] ?? 4363 ? and/or [NII] ?? 5755 ? lines. We have measured the intensities of all the detected emission lines and determined the abundances of oxygen and several other elements (N, Ne, S, Cl, C, and He) in all PNe. The radial velocity for one PN has been measured for the first time and the velocities for all of the remaining PNe have been measured with a considerably better accuracy than that of the previously published ones. The elemental abundances for three PNe have been calculated for the first time and the accuracies of determining the abundances for three others have been improved. The measured heavy-element abundance ratios (S/O, Ne/O, Cl/O) are in good agreement with their typical values for HII regions. Among the PNe studied, ESO 428-05 is the first and so far the most likely candidate for belonging to the remnants of a possible dwarf galaxy disrupted by the tidal interaction with the Milky Way.  相似文献   

14.
Spectroscopic observations of four planetary nebulae (PNe) with emission-line central stars of different spectral types are presented: Cn 1-5, Pe 1-1, NGC 5873, and M1-19. The interstellar extinction, physical conditions (n e , T e ), and abundances of several elements (He, N, O, Ne, S, Ar, Cl) have been determined for all nebulae. The nebula Cn 1–5 with fairly high abundances of helium and nitrogen is shown to belong to type I PNe. Possible variability of the intensities of low-excitation emission lines in NGC 5873 has been found; it can be related to variations of the stellar wind from the central star. The measured α-element abundance ratios (S/O, Ne/O, Ar/O, Cl/O) are in good agreement with those typical of HII regions.  相似文献   

15.
A sample of 93 emission-line high luminosity galaxies from the Sloan Digital Sky Survey (SDSS) has been investigated. Line intensities have been measured in 116 SDSS spectra. Oxygen abundance has been determined in the studied galaxies. Since the auroral line of twice ionized oxygen [O III] λ 436.3 nm cannot be detected in the spectra of the sample, the intensity ratio of nebular to auroral lines needed to determine the electron temperature is calculated using the ff-relation. The oxygen abundances obtained in SDSS high luminosity galaxies are 0.2–0.5 dex lower than the maximum attainable value. This is caused by the fact that the sample includes only the gas-rich galaxies in which intense bursts of star formation occur. The equivalent number of O7 V stars which are responsible for excitation of luminescent H II regions in the studied sample is two or three orders of magnitude more than the number of stars which cause the luminescence of the brightest H II regions in nearby galaxies, and it exceeds by one order of magnitude the number of stars which cause gas in SBS 0335-052 E to glow.  相似文献   

16.
Planetary Nebulae have proven to be an essential key to understand the long term chemical enrichment of the interstellar medium due to low mass stars. They allow to study the original abundances of the star, and the effect of the star on the interstellar medium. Blue compact dwarf galaxies are known to host violent star formation in very heavy element depleted environments. They also show traces of past star formation (Doublier et al., 1999; 2001), including AGB starsand red giants which are responsible for long term enrichment. However, models fails to reproduce the low metallicities observed if those stars are taken into account. We observed PNe in BCDGs, and made a comparative study of the abundances in the HII regions and of the PNe. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

17.
The He, C, N, and O abundances in more than 120 planetary nebulae (PNe) of our Galaxy and the Magellanic Clouds have been redetermined by analyzing new PNe observations. The characteristics of PNe obtained by modeling their spectra have been used to compile a new catalog of parameters for Galactic and extragalactic PNe, which is accessible at http://www.astro.spbu.ru/staff/afk/GalChemEvol.html. The errors in the parameters of PNe and their elemental abundances related to inaccuracies in the observational data have been analyzed. The He abundance is determined with an accuracy of 0.06 dex, while the errors in the C, N, and O abundances are 0.1–0.2 dex. Taking into account the inaccuracies in the corrections for the ionization stages of the elements whose lines are absent in the PNe spectra increases the errors in the He abundance to 0.1 dex and in the C, N, and O abundances to 0.2–0.3 dex. The elemental abundances in PNe of various Galactic subsystems and the Magellanic Clouds have been analyzed. This analysis suggests that the Galactic bulge objects are similar to type II PNe in Peimbert’s classification, whose progenitor stars belong to the thin-disk population with ages of at least 4–6 Gyr. A similarity between the elemental abundances in PNe of the Magellanic Clouds and the Galactic halo has been established.  相似文献   

18.
The central stars of two of the new planetary nebulae found during scans of the AAO/UKST H α Survey of the Milky Way have been found to exhibit Wolf–Rayet (WR) emission features. One (PMR 1) is an early-type star of class either [WO4] or [WC4]. The other (PMR 2) is a late [WC] star which, depending on the classification scheme used, is either intermediate in class between [WC9] and [WC10] or the sole member of the [WC10] class. Both stars exhibit unusual spectral features which may be attributed to enhanced nitrogen in their atmospheres and could be indicative of unusual stellar evolution.  相似文献   

19.
We present a direct spectroscopic measurement of the wind electron temperatures and a determination of the stellar wind abundances of the WC10 central stars of planetary nebulae CPD−56° 8032 and He 2–113, for which high-resolution (0.15-Å) UCLES echelle spectra have been obtained using the 3.9-m Anglo-Australian Telescope.
The intensities of dielectronic recombination lines, originating from autoionizing resonance states situated in the C2++e continuum, are sensitive to the electron temperature through the populations of these states, which are close to their LTE values. The high-resolution spectra allow the intensities of fine-structure components of the dielectronic multiplets to be measured. New atomic data for the autoionization and radiative transition probabilities of the resonance states are presented, and used to derive wind electron temperatures in the two stars of 21 300 K for CPD−56°8032 and 16 400 K for He 2–113. One of the dielectronic lines is shown to have an autoionization width in agreement with the theoretical predictions. Wind abundances of carbon with respect to helium are determined from bound–bound recombination lines, and are found to be C/He=0.44 for CPD−56° 8032 and C/He=0.29 for He 2–113 (by number). The oxygen abundances are determined to be O/He=0.24 for CPD−56° 8032 and 0.26 for He 2–113.
The effect of optical depth on the temperature and abundance determinations is investigated by means of a Sobolev escape-probability model. We conclude that the optically thicker recombination lines can still be used for abundance determinations, provided that their upper levels are far from LTE.  相似文献   

20.
Electron temperatures derived from the He  i recombination line ratios, designated T e(He  i ), are presented for 48 planetary nebulae (PNe). We study the effect that temperature fluctuations inside nebulae have on the T e(He  i ) value. We show that a comparison between T e(He  i ) and the electron temperature derived from the Balmer jump of the H  i recombination spectrum, designated T e(H  i ), provides an opportunity to discriminate between the paradigms of a chemically homogeneous plasma with temperature and density variations, and a two-abundance nebular model with hydrogen-deficient material embedded in diffuse gas of a 'normal' chemical composition (i.e. ∼solar), as the possible causes of the dichotomy between the abundances that are deduced from collisionally excited lines and those deduced from recombination lines. We find that T e(He  i ) values are significantly lower than T e(H  i ) values, with an average difference of  〈 T e(H  i ) − T e(He  i )〉= 4000 K  . The result is consistent with the expectation of the two-abundance nebular model but is opposite to the prediction of the scenarios of temperature fluctuations and/or density inhomogeneities. From the observed difference between T e(He  i ) and T e(H  i ), we estimate that the filling factor of hydrogen-deficient components has a typical value of 10−4. In spite of its small mass, the existence of hydrogen-deficient inclusions may potentially have a profound effect in enhancing the intensities of He  i recombination lines and thereby lead to apparently overestimated helium abundances for PNe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号